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This paper introduces PyFair, a formal framework for evaluating and verifying individual
fairness of Deep Neural Networks (DNNs). By adapting the concolic testing tool PyCT, we
generate fairness-specific path constraints to systematically explore DNN behaviors. Our key
innovation is a dual network architecture that enables comprehensive fairness assessments
and provides completeness guarantees for certain network types. We evaluate PyFair on 25
benchmark models, including those enhanced by existing bias mitigation techniques. Results
demonstrate PyFair’s efficacy in detecting discriminatory instances and verifying fairness,
while also revealing scalability challenges for complex models. This work advances algo-
rithmic fairness in critical domains by offering a rigorous, systematic method for fairness
testing and verification of pre-trained DNNs.

1. Introduction

Deep Neural Networks (DNNs) are increasingly deployed across diverse applications,
from autonomous vehicles to medical diagnostics. While these models often achieve re-
markable performance, their deployment in high-stakes scenarios raises significant con-
cerns about trustworthiness and fairness. In critical domains such as criminal justice, em-
ployment, and financial services, the algorithmic fairness of DNNs has come under intense
scrutiny [1, 2, 3]. Notable examples include racial bias observed in the COMPAS recidi-
vism prediction model [4] and gender bias evident in Amazon’s recruiting model [5]. This
heightened awareness underscores the critical importance of addressing fairness issues of
neural networks.

Various forms of discrimination have been acknowledged, including group discrim-
ination [6] and individual discrimination [7]. Discrimination is typically delineated with
respect to a set of Protected Attributes (PAs), such as race and gender, in contrast to the
Non-Protected Attributes (NPAs). Group fairness [6] advocates for impartial treatment
among protected groups (i.e., the sub-population defined by a protected attribute) to elim-
inate group discrimination. While group fairness is relatively easy to measure and has clear
policy implications, it can sometimes mask individual-level disparities or lead to reverse
discrimination. In contrast, individual fairness [7] dictates that similar individuals should
be treated similarly regardless of their membership in protected groups. In the context of
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machine learning, this means that two inputs differing solely in their PAs should lead to
identical model outcomes. Extensive efforts have been directed towards enhancing indi-
vidual fairness at the model level. One prevalent approach is fairness testing, which aims
to generate efficient test suites before deployment [8, 9, 10, 11, 12]. These discrimination
tests can be employed to quantify discrimination or can be utilized for model retraining to
alleviate unfairness. Despite these efforts, verifying fairness properties in complex DNNs
remains challenging due to their non-linear nature.

This paper presents PyFair, a novel framework for evaluating individual fairness of
DNNs using the concolic testing tool PyCT [13, 14]. Our research addresses the critical
gap in formal fairness guarantees for real-world DNN applications by extending automatic
testing techniques to fairness verification. Given a DNN model, PyFair employs concolic
execution to generate fairness-specific path constraints for the model. By systematically
exploring these constraints, test inputs that are most relevant to fairness assessment can be
identified. Although PyCT may be used alongside random sampling to evaluate potential
discrimination in a DNN, the absence of detected discrimination generally does not guar-
antee overall model fairness. PyFair strengthens the capabilities of PyCT, enabling a more
thorough and systematic exploration of the model’s behavior beyond sampling. Thanks to
our employment of SMT (Satisfiability Modulo Theories) solvers [15], this exploration is
complete when the neural network can be faithfully encoded in an SMT theory.1

We assess the efficacy of PyFair by evaluating network models studied in the literature
[16, 10, 11]. Our experiments demonstrate that PyFair can effectively identify discrimina-
tory instances in most models, often outperforming existing constraint-based testing tools
like Fairify [16]. We also test models improved by bias mitigation techniques such as
ADF [10] and EIDIG [11], showing that PyFair can still detect unfairness in these “fairer”
models. Furthermore, we evaluate PyFair’s capability to verify fairness in artificially con-
structed fair models, revealing both its potential and limitations in handling complex ar-
chitectures. These comprehensive experiments showcase PyFair’s effectiveness in both
discriminatory instance detection and fairness verification.

Overall, this work advances the state-of-the-art in neural network fairness verification
through a rigorous, systematic approach to identifying discriminatory instances. While
our approach delivers stronger guarantees than random sampling or gradient-based testing
methods [8, 9, 10, 11, 12], it requires greater computational resources and faces scalability
challenges when dealing with complex network architectures. This tradeoff between rig-
orous verification and computational efficiency represents an important consideration for
practitioners choosing between different fairness testing approaches based on their specific
requirements for completeness versus scalability.

2. Related Work

Fairness testing. Recent research has focused extensively on testing and validating
the fairness of DNNs using discriminatory examples. THEMIS [8] introduces fairness
scores as measurement metrics of fairness and devises a causality-based algorithm for ran-
dom discriminatory sample generation. While THEMIS uses pure and unguided random
sampling, tools like AEQUITAS [9] and SymbGen [17] offer more targeted generation
1For example, DNNs that use ReLU as its activation functions and Softmax in its output layer can be faithfully
encoded in the theory of linear real arithmetic for classification tasks.
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Table 1: Summary of related work in fairness testing and verification

Approach Focus Methodology
THEMIS [8] Fairness testing Causality-based random sampling
AEQUITAS [9] Fairness testing Local and global random sampling
SymbGen [17] Fairness testing Test case generation using symbolic execution
ADF [10] Bias mitigation Adversarial sampling based on gradient search
EIDIG [11] Bias mitigation An ADF variant with momentum optimization
NeuronFair [12] Fairness testing Adversarial sampling via neuron interpretation
Fairify [16] Fairness verification Adversarial sampling based on constraint-solving
PyFair Testing & verification Adversarial sampling based on concolic testing

algorithms to identify fairness violations. AEQUITAS pioneers a two-step approach com-
bining global and local search strategies, while SymGen exploits symbolic execution and
local explanability to generate effective test cases. Adversarial sampling [18] is also a pop-
ular method for analyzing fairness of DNNs. ADF [10] adopts a two-phase gradient search
to identify discriminatory examples. EIDIG [11] furthermore optimizes ADF by incorpo-
rating momentum in the global generation phase and reducing the frequency of gradient
calculations in the local generation phase. Despite these advancements, ADF and EIDIG
suffer from the issues of gradient vanishing and local optima. To address these challenges,
NeuronFair [12] interprets internal DNN states to guide instance generation and explore
decision boundaries. Unlike black-box methods such as THEMIS and AEQUITAS, which
prioritize efficiency through random sampling, PyFair provides more insights via white-
box analysis at a higher computational cost. Compared to heuristic search methods like
ADF and EIDIG, PyFair provides formal completeness guarantees, offering a more sys-
tematic exploration of discriminatory instances using concolic testing and SMT solvers.

Fairness verification. Testing has proven helpful in identifying fairness violations
and addressing model deficiencies, but it often falls short of verifying the absence of fair-
ness violations. Most studies in fairness verification have focused on group fairness, as
seen in FairSquare [19] and VeriFair [20]. John et al. [21] present the first technique for
verifying individual fairness of classical machine learning models. For neural networks,
LCIFR [22] certifies individual fairness by formulating it as a local property, which coin-
cides with robustness within a specific distance metric. In contrast, Libra [23] computes
certifications for the global property of causal fairness. Conceptually, ensuring individ-
ual fairness entails verifying a local or global robustness property, wherein the classifier
output remains unchanged for perturbations of any input within the domain. Fairify [16]
is a constraint-based approach for verifying the individual fairness of DNNs. The tool
decomposes the verification task into multiple sub-problems and prunes the networks to
mitigate verification complexity. While designed primarily for testing, our method can
also be employed to certify model fairness by concluding that there are no discriminatory
instances for a model. Another line of research attempts to achieve individually fair mod-
els through enforcement during model training [24, 22, 25, 26, 27]. Although this work
focuses primarily on determining whether a pre-trained DNN model violates fairness, our
method can be easily integrated into existing fair training approaches. Indeed, discrimi-
natory instances identified by our method can be used in model training and refinement,
such as generating challenging test cases to evaluate the trained models and identifying
areas where fairness enforcement might fall short.
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Algorithm 1: Discriminatory Instance Checking
Input: DNN Model M , Dataset Φ, Protected Attributes PA
Output: An unfairness witness (φ,φ′), if any

1 foreach individual φ in Φ do
2 Initialize Q,T ; // Both are empty at the beginning
3 Q,T ← Exploration(M,φ, PA,Q, T ); ; // Explore paths induced by φ (see [14])
4 while Q is not empty do
5 ϕ← Q.dequeue() ; // ϕ is the next path constraint
6 if ϕ has a solution then
7 φ′ ← result from SMT Solver ; // φ′ enables a new path
8 if M(φ) ̸= M(φ′) then
9 Abort and report (φ,φ′) ; // An unfairness witness is found

10 else
11 Q,T ← Exploration(M,φ′, PA,Q, T ) ; // Explore paths induced by φ′

12 Abort and report no discriminatory instances in Dataset Φ ; // No unfairness found in Φ

Concolic testing. Concolic testing has been adapted for neural networks to explore ex-
ecution paths and increase test coverage [28]. Tools such as DeepXplore [29], DeepGauge
[30], and DeepCon [31] offer alternative avenues by generating adversarial examples that
expose vulnerabilities in neural networks. DeepXplore introduces neuron coverage as a
metric for measuring DNN testing adequacy and uses multiple similar DNNs as cross-
referencing oracles to avoid manual checking. DeepCon proposes contribution coverage,
which considers both neuron outputs and connection weights to gauge testing adequacy.
DeepConcolic [32] conducts symbolic execution testing based on neuron coverage, gen-
erating inputs that activate neurons not triggered in the current execution. By combining
gradient-based and constraint-based methods, DeepConcolic systematically maximizes
neuron coverage across various paths. Most existing DNN testing tools focus on maximiz-
ing certain coverage measures instead of exploring critical branches for changing predic-
tion outcomes. As a result, it is not straightforward to plug these tools into our framework
to detect discrimination concerning protected attributes.

3. Discriminatory Instance Checking with PyCT

In this section, we detail our methodology for evaluating individual fairness in DNNs
through discriminatory instance checking. Our objective is to identify discriminatory in-
stances for a pre-trained model, serving as evidence of the model’s unfairness. We denote
the attributes of the model input as A = {A1, A2, ..., An}. Each attribute Ai is associated
with a domain Ii. The input domain is I = I1 × I2 × · · · × In, representing all possible
combinations of the attribute values. We use PA ⊂ A to represent the set of protected
attributes, and use NPA = A \ PA to denote the set of non-protected attributes.

Definition 3.1 (Discriminatory Instance [10, 25]). Let φ = (a1, a2, ..., an) denote an
arbitrary instance in the dataset, where ai represents the value of attribute Ai. Given a
model M , we say φ is a discriminatory instance of M if there exists φ′ = (a′1, a

′
2, ..., a

′
n)
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Fig. 1: A 3-layer DNN where the first attribute is protected (left). For this DNN and an
input φ: [0, 5], PyCT identifies another input φ′: [6, 5] with a different model output
(right), which indicates that φ is a discriminatory instance for the DNN.

such that (i) φ,φ′ belong to the input domain of M , (ii) ∃Ai ∈ PA. ai ̸= a′i, (iii) ∀Ai ∈
NPA. ai = a′i, and (iv) M(φ) ̸= M(φ′). We say (φ,φ′) is an unfairness witness of M .

A Deep Neural Network (DNN) consists of an input layer, multiple hidden layers,
and an output layer. Neurons in each layer connect to those in the adjacent layer through
weighted connections, enabling information extraction and transformation. Frequently
used activation functions include Rectified Linear Unit (ReLU), Sigmoid, Hyperbolic Tan-
gent (Tanh), and Softmax. The increased depth and complexity of DNNs make them par-
ticularly effective for advanced tasks such as image processing, computer vision, and nat-
ural language processing. PyCT is engineered to parse and simulate the operations of
network models embedded within Python programs, which includes implementing com-
monly used activation functions such as ReLU and Sigmoid. As a result, PyCT can analyze
neural network models and Python programs in an integrated and coherent manner.

Figure 1 illustrates how PyCT checks if a given input is discriminatory for a DNN.
The example depicts a DNN with a 1×2 input, undergoing a ReLU operation followed by
a Sigmoid function for binary classification. A sample [0, 5] is given for discrimination
evaluation, with the first attribute designated as protected (marked in red). We make the
protected attribute value 0 a concolic variable (0, x), which allows the perturbation of x to
identify attribute values that might alter the model’s output. The core algorithm for testing
discriminatory instances is presented in Algorithm 1. Essentially, PyCT maintains a tree
T to track the path constraints associated with all explored network paths. It also manages
a queue Q containing formulas whose solutions correspond to input values that guarantee
coverage of previously unexplored network paths. PyCT employs an SMT solver [33, 15]
to solve these formulas and find new test inputs that satisfy previously unexplored branch
conditions. In this example, the solver identifies a solution x = 6 for the perturbed input,
leading to a new test case [6, 5]. Feeding this case into the model changes its output from 0
to 1. Consequently, φ is a discriminatory instance and we conclude that the DNN is unfair.
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Fig. 2: The 2-DNN obtained from the DNN in Figure 1

Fig. 3: An overview of the PyFair framework

4. Fairness Verification with PyFair

Model fairness checking aims to exhaustively explore the input domain to identify a
pair of instances φ and φ′ identical in their NPAs but differ in their PAs and model out-
comes. As discussed in the previous section, PyCT can be directly applied to check model
fairness. However, since PyCT can only check one instance at a time, it faces limitations
when dealing with infinite input domains: even after testing numerous samples without
detecting discrimination, PyCT often cannot conclusively establish model fairness. To
address this limitation, we propose a framework, named PyFair, to certify model fairness
with completeness guarantees. This framework essentially extends PyCT with an innova-
tive data structure called the Dual DNN.

4.1 The Dual-DNN Architecture

A Dual DNN (2-DNN) is a DNN with three types of attributes PA, NPA, and PA’,
where PA’ duplicates PA. A 2-DNN M̃ is constructed by creating two copies of a given
DNN M , such that one takes an input on PA and NPA, and the other takes an input on PA’
and NPA. The outputs of these two DNNs are combined by comparison to produce the final
output of M̃ . As an illustration, consider the 2-DNN M̃ in Figure 2, which is derived from
the DNN M in Figure 1. Given a (symbolic) input instance (x, y) with x ∈ PA and y ∈
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Algorithm 2: 2-DNN Computation
Input: Original model M and a list of PA indices PA
Output: The weight matrix w2 of the 2-DNN for M

1 w ← the weight matrix of M ; // Retrieve weights of the original model
2 Initialize an empty list w2 ; // List to store 2-DNN weights
3 foreach layer index l in w do
4 m,n← size(w[l]), size(w[l + 1])× 2 ; // Determine dimensions
5 if l is the index of a hidden layer then
6 m← m× 2 ; // Double the rows for the hidden layer
7 z ← a new array of shape (m,n) ; // Create array to store weights
8 for i← 0 to m− 1 do
9 z[i][: n]← w[l][i] ; // Copy original weights to the first half
10 z[i][n :]← w[l][i] ; // Duplicate weights to the second half

11 Append z to w2 ; // Store the updated weights

12 else if l is the index of an input layer then
13 z ← a new array of shape (m,n) ; // Create array for input layer weights
14 for i← 0 to m− 1 do
15 z[i][: n]← w[l][i] ; // Copy original weights to the first half
16 z[i][n :]← w[l][i] ; // Duplicate weights to the second half

17 for p in PA do
18 z[p][n :]← 0 ; // Set protected attributes’ second half to zero
19 a← [0] ∗ n+ w[l][p] ; // Create additional row for protected attributes
20 Append list a to the end of z ; // Add new row for protected attributes

21 Append z to w2 ; // Store the updated input layer weights
22 else
23 z ← a clone of w[l] ; // l is a bias layer; simply copy weights
24 Append z to w[l] ; // Duplicate the layer weights
25 Append w[l] to w2 ; // Store the duplicated weights

26 return w2 ; // Return the constructed 2-DNN weights

NPA, the 2-DNN transforms it to (x, y, x′), passes x, y to the nodes n2,1, n2,2, n2,3, n3,1,
and passes x′, y to the nodes n′

2,1, n
′
2,2, n

′
2,3, n

′
3,1. The 2-DNN’s output is determined by

M̃(x, y, x′) =

{
1, M(x, y) ̸= M(x′, y)

0, o.w.
(1)

Subsequently, we can employ PyCT to explore the network M̃ and identify a solution for
M̃(x, y, x′) = 1 with x ̸= x′. If all branches result in UNSAT, we conclude that the
original model M has no unfairness witness. In this way, we can transform the fairness
checking problem of a DNN into a problem of finding adversarial examples for a 2-DNN.
Algorithm 2 describes the construction of a 2-DNN from a DNN and a set of PA indices.

4.2 The PyFair Framework

We outline the framework of PyFair in Figure 3. PyFair takes a DNN model and a
set of PAs as input. It first constructs a 2-DNN based on the model and the PAs. Starting
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Fig. 4: Tree T (top left), Tree T ′ (top right), and Queue Q (below)

from a random concolic input, PyFair either finds an unfairness witness or reports that no
such witness exists. This approach is complete for checking model fairness when the input
DNN can be faithfully encoded in an SMT theory (e.g., when the network has ReLU as its
activation functions and Softmax in its output layer).

Proving unfairness with PyFair. As a detailed example, we describe the execution
of PyFair on the 2-DNN in Figure 2 and the input [0, 5, 0]. As mentioned earlier, the
concolic tester maintains a treeT and a queueQ to explore previously unexamined network
branches. Figure 4 depicts the states of T and Q during discriminatory instance checking.

The 1st iteration: We set three input as concolic variable: (0, x), (5, y), and (0, x′).
After computing the weighted sum, the first hidden node n2,1 remains a concolic variable
(−5, x − y), computed as 0 ∗ 1 + 5 ∗ (−1) + 0 ∗ 0 = −5 for the concrete value and
x ∗ 1 + y ∗ (−1) + x′ ∗ 0 = x − y for the symbolic expression. A node n2,1 with
label φ1 = (x − y) > 0 is inserted into T as a root. The remaining hidden nodes
n2,1, n2,2, n2,3, n3,1, n

′
2,1, n

′
2,2, n

′
2,3, n

′
3,1 are computed in similar manner. The output

vector is computed using the absolute difference between the variables label and label′ to
determine if the two labels are the same. Since our input is (0, 5, 0), we collect the input
along with its output as x = 0, y = 5, x′ = 0, and label = label′.

The 2nd iteration: We give the constraints dequeued from Q to the SMT solver,
which provides a solution x = 1, y = 0, x′ = 2 as a new test input. We repeat this proce-
dure to gather more branches, as illustrated by Tree T’ in Figure 4. Finally, the Sigmoid
function produces the same prediction as the original label. Thus, we continue dequeuing
constraints from Q.

The 3rd ∼ 6th iterations: Constraints¬φ1∧¬φ2, ¬φ1∧φ2∧¬φ3, etc., are dequeued
from Q in order by exploring new test inputs. This process terminates when the queue Q
is empty, or the output label is 1 (indicating the discovery of a unfairness witness). Since
the outputs remain unchanged for these inputs, the process continues.

The 7th iteration: In this iteration, the constraint ¬φ1 ∧ φ2 ∧ φ3 ∧ ¬φ4 ∧ φ5 ∧ ¬φ6

is dequeued from Q. This time, the test input x = 1, y = 2, x′ = 0 yields a different
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Fig. 5: Tree T (left) and Tree T ′ (right)

model prediction. We add a node with this input and the prediction label Output = 1 as
the left child of n6. The process terminates here and reports unfairness for the model. The
witness of unfairness is ((1, 2), (0, 2)).

Proving fairness with PyFair. We proceed to demonstrate how PyFair certifies the
fairness of a fair model. To obtain a fair model, we simply modify the DNN in Figure 1
by setting the outgoing weights of the PA to zero. With this setup, we can guarantee that
the PA value does not influence the output value, resulting in a fair model.

The 1st iteration: We use [0, 5, 0] as the initial input to explore the branch conditions.
The T and Q collected by PyFair are displayed in Figure 5.

The 2nd iteration: In this iteration, we proceed to examine the branches starting from
the front of Q (Q7 in Figure 5). The SMT solver cannot find a solution, so we label the
corresponding path as “no solution” (i.e., at the left branch of n6 in Tree T) in Figure 5.

The 3rd iteration: In this step, we address the constraint ¬φ1 ∧ ¬φ2. The SMT
solver generates a new test input [0, 0, 1] and repeats the exploration process. The path
condition explored by this third test input is depicted by Tree T’ in Figure 5. The prediction
label for [0, 0, 1] remains unchanged from the original. Consequently, we insert the values
x = 0, y = 0, x′ = 1, Output = 0 into the left branch of n11.

The 4rd iteration: The process continues by dequeuing from Q. In this iteration,
¬φ1 ∧ φ2 ∧ ¬φ3 has no solution, so we label “no solution” on the corresponding branch
in the tree, similar to what was done in iteration 2.

The 5th ∼ 12th iterations: Similarly, for the 5th to 12th iterations, PyFair continues
by dequeuing Q to resolve constraints. Since the SMT solver returns UNSAT, indicating
no solutions for each branch, we label “no solution” on the branches in Figure 5.

Once all path constraints are resolved (i.e., Q becomes empty), PyFair reports that no
unfairness witness can be identified for the network. Since the network is expressible in
SMT, this outcome certifies the network’s fairness with respect to the given PAs.

5. Evaluation

In our evaluation, we conduct discriminatory instance checking and model fairness
verification for 25 models. We adopt a methodology similar to Fairify [16] and employ
benchmark models from Fairify and previous studies [11]. These neural networks are fully
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connected, utilizing ReLU and Sigmoid as activation functions. Based on these models, we
first evaluate the performance of discriminatory instance checking using PyCT for a single
PA (RQ1) and PyFair for multiple PAs (RQ2). We also test models generated by existing
bias mitigation techniques like ADF and EIDIG [10, 11], evaluating how effectively PyFair
can identify discriminatory instances in well-trained models (RQ3). Finally, we investigate
PyFair’s efficacy in proving model fairness for perfectly fair models (RQ4).

We will use the following indicators in the tables: UW stands for whether unfair-
ness is witnessed, with Y indicating a discriminatory instance is found, N indicating no
evidence is found, and Unk meaning no conclusion within the time limit. FQ stands for
the queue size after the initial sample’s first forward pass in the model. The constraints
within this queue are collected by modifying the states of activation functions. The FQ
value therefore reflects the model’s size. #test is the total number of samples tested within
the time limit. #sat is the total number of constraints that the SMT solver determined to
be SAT during the execution time. #unsat is the total number of constraints that the SMT
solver determined to be UNSAT during the execution time. Time is the execution time.
Bias(%) is employed to assess model fairness by determining the proportion of individual
discriminatory instances within the dataset, and a lower percentage indicates greater fair-
ness of the model.2 Fair indicates the model fairness with Y for being fair, N for being
unfair (i.e., a witness is found), and Unk for no conclusion within the time limit.

RQ1: What is the performance of PyCT in checking discriminatory instances
on a single PA? In this experiment, we provide PyCT with 1500 random samples from
the input domain. We evenly distribute these samples among 30 subprocesses for parallel
processing. Each subprocess independently performs discriminatory instance checking on
its assigned 50 samples. If any subprocess finds a discriminatory instance, the checking
terminates and the time is recorded. We present the results below, where column “UW”
indicates whether PyFair successfully identifies discrimination in the random samples.

Fairify PyCT
PA Model Bias(%) UW UW FQ #test #sat #unsat Time

Race

AC1 2.11 Y Y 24 10 3 256 33.46
AC2 0.8 Y Y 100 2 1 117 33.55
AC3 1.84 Y Y 50 5 3 244 33.56
AC4 1.06 N Y 200 3 1 539 408.45
AC5 2.48 Y Y 128 1 1 79 106.82
AC6 0.86 Y Y 24 11 6 321 467.13
AC7 0.78 N Y 124 71 60 11082 2697.17
AC8 1.89 Y Y 10 95 25 950 175.38
AC9 2.01 Y Y 12 30 9 348 110.51
AC10 1.54 Y Y 20 11 1 213 33.61
AC11 0.91 N Y 40 7 1 250 1684.83
AC12 1.54 N Y 45 5 1 179 469.69

Fairify PyCT
PA Model Bias(%) UW UW FQ #test #sat #unsat Time

Age

BM1 0 Y Y 80 138 5 11036 1053.78
BM2 0 Y Y 48 13 2 589 33.46
BM3 0 Y Y 100 58 1 5705 622.20
BM4 0 Y Y 300 590 20 147165 36028.09
BM5 0.45 Y Y 32 209 6 6512 388.63
BM6 0.88 Y Y 18 220 13 3822 332.68
BM7 1.42 Y Y 128 68 3 8366 1186.26
BM8 0.52 N Y 124 71 15 8976 2400.23

Sex

GC1 0.98 Y Y 50 7 2 347 33.96
GC2 2.07 Y Y 100 2 1 145 68.03
GC3 1.9 Y Y 9 17 1 147 42.73
GC4 0 Y N 10 1500 0 15000 52217.74
GC5 0 N N 124 1443 6 169103 60809.37

We compare our tool with Fairify [16], a state-of-the-art constraint-based fairness
verifier, over the same PAs on the same datasets. Fairify identifies discriminatory instances
for 19 models with a timeout of 1800 seconds, as shown in column “Fairify UW”. Detailed
information from PyCT is also provided: “#test” indicating the total number of instances
tested on the model (randomly selected from the dataset), and “#sat” and “#unsat” reflect
the feasibility of path constraints, offering valuable insights into the overall viability of

2More precisely, we repeatedly sampled 100 random inputs from the dataset and altered the PA value at random.
If changing PA results in a classification shift, it is considered a discriminatory instance. We then compute the
ratio of discriminatory inputs over 100 rounds. This calculation method is adapted from AEQUITAS [34].
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these constraints within the model. For instance, in the case of AC5, PyCT identifies its
discriminatory instance right after the first test sample. It locates this instance after making
80 branch exploration attempts (the sum of #sat and #unsat). The SAT outcomes indicate
the number of successful explorations, while the UNSAT ones indicate the visited hidden
nodes that do not impact the output.

We conclude that it is effective for PyCT to perform discriminatory instance checking.
However, in some cases, it takes a long time to test a large number of samples, e.g., for
GC4 and GC5, possibly due to insufficient sample diversity. In the subsequent experiment,
we attempt to address this limitation using 2-DNN.

RQ2: What is the performance of PyFair in checking discriminatory instances
on multiple PAs? In contrast to vanilla PyCT, PyFair is capable of checking discrim-
inatory instances with multiple PAs thanks to the use of 2-DNN. For dual_ACs (i.e., the
2-DNN counterpart of the AC models), the runtime of checking multiple PAs is faster
than checking a single PA in many tests. The “FQ” values of these tests indicate that the
model complexity does not significantly increase with the number of PAs used. Moreover,
the values of #sat and #unsat are generally lower, indicating that PyFair can more quickly
identify discriminatory instances when multiple PAs are involved.

PyFair
PA Model UW FQ #sat #unsat Time

Race,
Age,
Sex

dual_AC1 Y 48 36 19 143.06
dual_AC2 Y 200 1 0 47.8
dual_AC3 Y 100 4 0 148.78
dual_AC4 Y 400 20 1 333.41
dual_AC5 Y 256 4 0 146.78
dual_AC6 Y 48 27 25 1380.37
dual_AC7 Y 248 13 3 3078.09
dual_AC8 Y 20 18 1 16.36

PyFair
PA Model UW FQ #sat #unsat Time

Race,
Age,
Sex

dual_AC9 Y 24 9 6 11.94
dual_AC10 Y 40 5 0 10.19
dual_AC11 Y 80 27 4 1413.52
dual_AC12 Y 90 6 1 1653.62

Age,
Sex

dual_GC1 Y 100 166 134 41043.57
dual_GC2 Y 200 6 2 171.08
dual_GC3 Y 18 5 1 11.18
dual_GC4 N 20 258 1833 1841.44
dual_GC5 N 248 65 46 Timeout

Compared with vanilla PyCT, PyFair requires only one test sample to perform dis-
criminatory instance checking, since PyFair can automatically generate all feasible test
cases from a given sample. For example, PyFair exhaustively generates and tests 258 in-
stance pairs for dual_GC4, while PyCT tests the GC4 model over 1500 random samples
without identifying any new test case (see the table in RQ1). Although both approaches are
inconclusive, dual_GC4 allows PyFair to explore all model branches within the time limit,
offering higher coverage and confidence in fairness assessment. These results showcase
PyFair’s ability to handle multiple PAs simultaneously. On the other hand, PyFair still
struggles with complex models like GC5, which indicates the challenges in thoroughly
evaluating DNN fairness and the need of further optimization.

RQ3: How effective is PyFair in testing improved models by ADF and EIDIG?
ADF and EIDIG [10, 11] exploit discriminatory instances to augment the data and re-
train the model. Both retraining methods involve randomly sampling 5% of the generated
discriminatory instances, relabeling them using majority voting [35], and incorporating
these instances into the original training set before retraining the model on the augmented
dataset. The effectiveness of these methods is shown in the left table of Table 2. As
observed, models AC14, AC15, and AC16 exhibit lower Bias(%) compared to AC13.
The difference between AC15 and AC16 lies in the frequency of recalculating gradients
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Table 2: Checking Fairness of Biased Models (left) and Fair Models (right)

PyFair
PA Model Bias(%) UW FQ #sat #unsat Time

Race,
Age,
Sex

AC13 (Original) 9.33 Y 180 20 6 30490.02
AC14 (ADF) 2.61 Y 180 12 1 24475.46
AC15 (EIDIG-5) 1.00 Y 180 8 1 15673.36
AC16 (EIDIG-∞) 1.24 Y 180 12 1 22035.31

PyFair
PA Model Fair FQ #sat #unsat Time

Age

fair_dual_GC1 Unk 102 86 145 1800
fair_dual_GC2 Unk 202 37 175 1800
fair_dual_GC3 Y 20 1835 227 1798
fair_dual_GC4 Y 22 382 28 40
fair_dual_GC5 Unk 248 1 2 1800

and attribute contributions. In AC15, these calculations are updated every five iterations
(EIDIG-5), whereas in AC16 they are not updated (EIDIG-∞).

We test these four models using our fairness checking framework to evaluate how
effectively PyFair identifies discriminatory instances in well-trained models. We observe
that, even after applying ADF and EIDIG, the models are still vulnerable to discrimina-
tory behavior. In Table 2, we present the results of using PyFair to analyze the original
model and the retrained models. Our tool identifies discriminatory instances for all four
models. Interestingly, PyFair takes shorter time to identify discriminatory instances for
the retrained models, which are statistically shown to be fairer than the original model.
This result confirms the intuition that constraint-based methods are often more effective
than sampling-based methods for detecting subtle biases.

RQ4: How effective is PyFair in proving model fairness? To answer this ques-
tion, we evaluate PyFair’s effectiveness on perfectly fair models. These models are derived
from the benchmarks by setting the outgoing edge weights to zero for input nodes on PAs,
ensuring that these attribute values do not influence the model outcome. Also, the Sig-
moid function in the output layer is replaced with a direct comparison with the threshold,
allowing PyFair to faithfully encode the network in linear real arithmetic.

The experimental results reveal both the potential and limitations of our tool in veri-
fying model fairness, as only relatively small models can be fully verified within the 1800-
second timeout. For example, in the right table in Table 2, the fair models verified by
PyFair are relatively small (which can be seen by their small FQ values). For the GC5
model, PyFair only manages to explore one test case due to costly constraint solving. To
conclude, even though PyFair can be employed to prove model fairness, the runtime can
be considerable for complex models. This scalability issue underscores the need for more
efficient techniques to handle the path constraints generated during fairness verification.

6. Conclusion

This work proposes a novel concolic testing framework for automatic fairness test-
ing and verification. Our approach synthesizes sample inputs to explore different decision
branches in model inference, achieving effective discriminatory instance verification and
model fairness checking for pre-trained DNNs. The key strength of our framework lies in
its dual network architecture and use of SMT solvers, which enable systematic exploration
of fairness properties with formal guarantees for networks that can be encoded in SMT the-
ories. However, just like other constraint-based testing approaches [14, 16], our evaluation
reveals limitations around scalability, as the computational overhead becomes prohibitive
for complex model architectures. Future work could enhance the framework through more
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efficient algorithms for handling larger architectures, extension to different network types
like RNNs and Transformers, and deeper integration with fair model training techniques.
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