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Abstract—Concolic testing, which combines concrete testing
and symbolic execution, has proven highly effective in detecting
software vulnerabilities. While traditional unit testing relies
on manually crafted test cases to verify specific program
behaviors, concolic testing automatically explores execution
paths by mixing concrete and symbolic inputs. This paper
presents a novel methodology for bridging these approaches
by automating unit test generation through dynamic function
tracking. Our approach enhances traditional concolic testing
by dynamically wrapping functions and external libraries for
symbolic execution, addressing the critical challenge of prema-
ture symbolic variable downgrading caused by unsupported
operations. By dynamically upgrading inputs to concolic ob-
jects during function calls and integrating fuzzing techniques,
our method maintains symbolic coverage across program ex-
ecution and handles cases where direct symbolic upgrade is
infeasible. Experimental results across various Python libraries
demonstrate significantly higher code coverage and vulner-
ability detection compared to traditional methods, with the
ability to generate comprehensive test suites from minimal
initial inputs.

Index Terms—Python, Unit Test, Concolic Testing, Runtime
Analysis.

1. Introduction

As software systems grow increasingly complex and ubiq-
uitous, ensuring their reliability and security has become
a critical challenge in modern computing. To address this
challenge, the software industry has developed sophisticated
automated testing techniques that can generate test cases,
execute them, and analyze results without manual inter-
vention. These techniques include fundamental approaches
such as unit testing [1], fuzzing [2], symbolic execution [3],
and concolic testing [4], each serving distinct yet comple-
mentary roles in comprehensive software validation. Among
these methods, concolic testing (a portmanteau of “concrete”
and “symbolic”) has emerged as a particularly effective
approach for identifying software vulnerabilities. It achieves
this by synthesizing two powerful testing paradigms: con-
crete testing, which evaluates system behavior using specific
input data, and symbolic execution, which treats inputs as

variables to generate constraint conditions. By alternating
between these approaches, concolic testing systematically
explores diverse system behaviors. This hybrid methodology
effectively bridges the gap between black-box and white-
box testing strategies, harnessing the advantages of both
approaches [5].

However, one significant limitation of this approach involves
the handling of unsupported operations and external func-
tions. When the concolic testing algorithm encounters these
constructs, it is forced to downgrade symbolic variables to
their concrete values, thereby losing the symbolic informa-
tion that is crucial for comprehensive path exploration [6]–
[8]. The root cause of this limitation is tied to the algorithm’s
reliance on an underlying SMT solver (like Z3 [9]), which
only supports a subset of Python operations expressible in
specific theories. Unsupported operations, such as bitwise
operations or functions returning complex types like tuples
or lists, cannot be easily expressed within these theories.
Additionally, the symbolic representations are often inade-
quate for functions that behave like black-box operations,
such as cryptographic hashes or system-level APIs, which
are inherently non-symbolic [6]. This downgrading leads to
gaps in test coverage and reduces the effectiveness of the
concolic testing process.

To illustrate this issue, consider the following code snippet:

import hashlib

def check_auth(user: str, pwd: str) -> bool:
"""
Check if the user's hashed password matches
the stored hash.
"""
pwd_hash = hashlib.md5(pwd.encode()).hexdigest()
return pwd_hash == stored_hash.get(user)

This code executes an external function hashlib.md5, which
computes a cryptographic hash. This operation is inherently
non-symbolic and behaves like a black box. The concolic
engine cannot easily express the hashing operation symbol-
ically, causing the symbolic input password to downgrade
to its concrete value during testing. This loss of symbolic
information prevents exploration of paths where different
passwords might produce different hash values.

In this work, we propose to mitigate the symbolic downgrad-



ing problem by upgrading the input values of unsupported
operations and external functions through separate concolic
tests, thereby preserving the symbolic exploration capabil-
ities. More specifically, we extend PyCT [7], a powerful
Python concolic testing tool, by integrating a technique
named Dynamic Function Tracking (DFT). DFT dynami-
cally tracks function and function calls during execution
and wraps these functions to keep inputs symbolic wherever
possible. Existing concolic execution tools like CrossHair
[8] are more static and tend to analyze functions sym-
bolically only if these functions can be easily in-lined or
if they have contracts. For complex functions nested in-
side other functions or classes, these tools often simply
fall back to concrete execution. DFT, on the other hand,
dynamically profiles and wraps functions. It monitors the
execution of all functions at runtime and uses this profiling
to decide whether the function can be symbolically executed
or requires a different testing method. Whenever possible,
DFT dynamically wrapped functions by converting concrete
inputs into symbolic variables to enable more thorough
testing. If symbolic execution is not feasible, it falls back
to fuzzing, which generates random or mutated inputs to
mitigate the loss of test coverage. Note that, while we have
realized this technique on PyCT, it is not specific to PyCT
and can be applied to any concolic engines facing similar
challenges.

We evaluate the efficacy of our DFT approach by comparing
it directly against the standard unit test framework of Python
across a diverse collection of benchmarks. The comparison
focuses on several key metrics, including code coverage,
error detection, and dependency analysis. By dynamically
tracking function calls and maintaining symbolic representa-
tions, DFT extends the capabilities of traditional unit testing.
The experimental results reveal that DFT achieves signifi-
cantly higher code coverage and identifies more errors com-
pared to the baseline unit test approach, especially in testing
libraries like Transformers, Jsonschema, and Numpydoc.
Additionally, DFT demonstrates its strength in scenarios
where the availability of predefined unit tests is limited, such
as the CNN inference experiment, by dynamically generat-
ing inputs that reveal hidden errors in both the target package
and its dependencies. Our evaluation also examines the inte-
gration of fuzzing with DFT. The results show that while this
integration may extend testing coverage, the benefits come at
the cost of increased execution time. These findings validate
DFT’s efficacy in enhancing automated testing for Python
projects, especially in environments where traditional unit
tests fall short.

Organization. This paper is organized as follows: Section 2
provides an overview of related work. Section 3 describes
our framework and key contributions. Section 4 presents
experimental evaluation across multiple Python libraries.
Section 5 discusses the potential limitations of our approach,
and Section 6 concludes the paper with directions for future
work.

2. Related Work

Concolic testing has emerged as a powerful technique to
overcome the inherent limitations of symbolic execution,
such as path explosion and difficulties in solving non-linear
constraints [5]. Initially, symbolic execution was introduced
to verify software correctness by testing whether certain
properties could be violated [10]. While it has been ef-
fective in tasks such as automated test case generation
[11], program invariants inference [12], and vulnerability
detection [13], purely symbolic execution struggles with
the complexities of real-world programs, especially when
encountering complex constraints or interacting with exter-
nal APIs. Concolic testing addresses these challenges by
executing programs with concrete inputs while collecting
symbolic path constraints to explore alternative execution
paths systematically [5]. By leveraging both symbolic and
concrete execution, concolic testing can more efficiently
explore a program’s state space, avoiding the path explo-
sion problem commonly seen in pure symbolic approaches.
Successful applications of symbolic and concolic testing can
be seen in tools like KLEE [14], SPF [15], and Triton [16].

Although symbolic and concolic execution engines have
been widely adopted for languages like C, Java, and LLVM,
their support for Python remains limited due to the lan-
guage’s dynamic typing and flexible data structures. In
recent years, several concolic testing tools have been devel-
oped specifically for Python, including PyCT [7], CrossHair
[8], PySym [17], and PEF [18]. These tools are built upon
the pioneering architecture of PyExZ3 [19], which performs
path exploration by substituting native data types with proxy
objects and extracting symbolic constraints during execu-
tion. Nevertheless, such tools often encounter limitations
when handling unsupported operations and external function
calls, leading to symbolic downgrading where variables
revert to their concrete values. While implemented on PyCT,
our proposal to mitigate downgrading can in principle be
integrated into all tools based on the PyExZ3 architecture.

In this work, we have further enhanced our dynamic testing
techniques with fuzzing [20], [21] when downgrading is un-
avoidable. Many existing concolic testing tools incorporate
fuzzing capabilities, including KLEE [14], Distiller [22],
QSYM [23], and CrossHair [8]. However, only CrossHair
and our work specifically target Python programs through
designs that accommodate Python’s dynamic nature. Inter-
estingly, these two approaches employ fuzzing for distinct
objectives: our tool enriches concolic execution with fuzzing
to guide the test toward unexplored branches after symbolic
downgrading occurs. In contrast, CrossHair treats fuzzing as
a lightweight alternative to full concolic execution, with an
aim to balance test coverage and test efficiency.

3. Methodology

In this section, we briefly recall the main algorithm of PyCT
and describe how to employ PyCT in automatic unit testing.
For the latter, we introduce two approaches: the first, called



Invoked Function Testing (IFT), performs targeted testing by
directly modifying specific function invocations to elevate
downgraded symbolic variables and enforce concolic testing.
The second, called Dynamic Function Tracking (DFT), uses
a profiler to monitor all function calls dynamically, enabling
real-time tracing without needing to predefine each function
for PyCT testing. DFT can be construed as a dynamic
version of IFT: while IFT examines only pre-specified func-
tions, DFT captures real-time function calls across the entire
execution flow, automatically expanding test coverage to
include unexpected or deeply nested functions without prior
specification.

3.1. Object-Oriented Concolic Testing

We first revisit the concolic testing algorithm that serves as
the foundation of PyCT, which elegantly integrates symbolic
execution with Python’s dynamic and object-oriented model.
It was initially proposed by Ball and Daniel [6], [19], and
has been adapted and further refined by various Python
testing tools [7], [8], [17], [18]. The core idea behind the
algorithm is to substitute basic Python data types (such as
integers and strings) with concolic objects to maintain both
the concrete and symbolic representations of a data variable.
Each concolic object includes two components: a concrete
value and a symbolic expression representing this value in
terms of input variables. For example, an integer variable a
might be represented as a concolic object ca = (2, x + 1),
where 2 is the concrete value of a and x+1 is an expression
depicting the relationship between a and an input variable
x, namely, a = x+ 1.

During testing, the algorithm uses concolic objects to track
and update constraints during program execution (Figure 1).
For each path executed, the algorithm maintains a path
condition tree T and a queue Q of unexplored branches. The
tree T records all explored paths by maintaining nodes with
constraints encountered during execution. Simultaneously,
Q stores formulas representing unexplored branches, which
are derived by negating conditions in the current path. The
algorithm uses these stored formulas to generate new inputs
for subsequent runs, ensuring that unexplored paths are
systematically covered. This iterative process of extending
T and processing Q enables comprehensive exploration of
the tested code: even in complex programs with nested
conditionals, this process ensures that every condition is
tested with different combinations of inputs.

To derive path constraints from concolic objects, the member
functions of Python’s data types must be overridden to
support both symbolic and concrete computation. Consider
our previous example: when an overridden member function
ca.f operates on a concolic integer variable a, it performs
two key updates. First, it updates ca’s concrete value 2
exactly as the original function a.f would. Second, it trans-
forms the symbolic expression x+ 1 into a new expression
that precisely captures what happens when a.f is called with
a = x + 1. This dual-update design enables the concolic

tester to handle Python’s diverse operations while preserving
symbolic representations wherever feasible.

Unfortunately, not every function can be overridden to sup-
port symbolic expressions (e.g. when they involve operations
or data structures that do not admit effective encoding in
SMT theories [24]). Whenever the concolic engine encoun-
ters such unsupported functions or constructs, it automati-
cally downgrades the concolic object to a concrete value.
This fallback mechanism allows executions to continue
without runtime exceptions even when full symbolic support
is not available. Despite its flexibility, concolic object down-
grading can lead to reduced symbolic coverage, as noted
in the PyCT and CrossHair implementations [7], [8]. This
limitation motivated the development of our techniques in
this paper, which aim to minimize coverage loss through
two key strategies: dynamically upgrading input values and
independently testing unsupported operations.

3.2. Invoked Function Testing

As mentioned in the previous section, concolic testing may
face challenges in handling unsupported operations, result-
ing in the downgrading of symbolic variables to concrete
values. To overcome this, we can execute PyCT individually
for all invoked functions. This adaptation restores symbolic
variables in scenarios where they have been downgraded but
subsequent code still requires testing.

More specifically, the Invoked Function Testing (IFT)
method involves modifying the loader in Python’s unit tests
to inspect all functions within the tested module. This
method utilizes the inspect package’s getMembers func-
tion to check if the objects called within the tested module
have function or class types. If the object at hand is of
function type and any of its parameters has types int, float,
str, or boolean (i.e. the types currently supported by PyCT),
we create corresponding symbolic variables for the concrete
variables and replace the function with a wrapped function
that automatically uses concolic objects for PyCT execution
when called. For objects of class types, we apply the same
checking method as for functions and replace all functions
within the class accordingly.

As a result, each invocation of a wrapped function triggers
automatic PyCT testing, which ensures that the execution
paths inside functions are also explored symbolically. This
mechanism helps identify errors or vulnerabilities that may
be missed if the functions are not tested in isolation, thereby
achieving a higher level of code coverage than the ordinary
unit-test method.

3.3. Dynamic Function Tracking

While IFT requires manual function wrapping, Dynamic
Function Tracking (DFT) leverages Python’s built-in pro-
filer system for automatic, real-time monitoring of function
calls and execution paths. This profiling capability provides



Figure 1. A concolic testing example from Chen et al. [7]. Left: a program for checking if x is a palindrome. Right: a snapshot of the tree T and queue
Q in the concolic testing process on the program.

Figure 2. Flowchart of Dynamic Function Tracking

insights into the program’s behavior at run time without
requiring explicit code instrumentation.

We implemented a custom profiler embedded within pro-
gram execution flow based on Python’s profiling mechanism
(i.e. using sys.setprofile), which enables us to capture
detailed information about each function whenever the main
program calls any functions (including function calls within
these functions), such as the function name, function object,
and the current input values used. Our profiler is designed to
assess whether the function can be invoked independently,
whether it requires input parameters, and whether any of
these parameters are appropriate for PyCT testing. To illus-
trate, consider the situation when the profiler records a call
to the updatecache function in linecache.py:

def updatecache(filename, module globals=None)

Our tool detects two parameters for this function: a string

variable filename and a module variable module globals.
Since string type is supported, this function is analyzable by
PyCT. If this function has not been previously analyzed in
the current test, our tool will mark filename as a concolic
object and keep the concrete value of module globals. The
tool then passes the path of the function and the function
object itself to PyCT for concolic testing. We outline the
testing process using DFT in Figure 2.

During this process, the stack and frame mechanisms in
Python play a crucial role: each time a function is called,
a new frame is created and pushed onto the top of the call
stack. This frame contains all the necessary information for
the function’s execution, including local variables, global
variables, code objects, and instruction pointers. When the
updatecache function executes, its frame is maintained in
the stack, enabling the profiler to monitor and record the
function calls and their execution paths in real-time. Once
the function execution is complete, the frame is popped from
the stack, and the control returns to the previous frame that
called the function. This frame and stack mechanism allows
the system to dynamically capture and analyze function
calls, ensuring that PyCT can perform concolic testing on
eligible functions.

Compared to the function invocation method described in
Section 3.2, DFT has several advantages. First, DFT elimi-
nates the need to wrap and wait for the functions and objects
within the tested module to be called, since it dynamically
examines the invoked functions. Moreover, DFT avoids the
need to manually increase the levels of inspection (i.e. ex-
tending to record all functions within the objects called by
the tested module, and subsequently the functions called
within those objects, and so on). Indeed, DFT allows for the
straightforward acquisition and examination of the currently
executing function, regardless of its depth in the call stack.

Overall, integrating a profiler with PyCT systematically ex-
tends test coverage beyond the initial test cases: the profiler
captures relevant functions, and PyCT produces new inputs
based on runtime information to challenge their robustness



Algorithm 1 Dynamic Function Tracking with Fuzzing
Require:

func: function object of the target function func
path: full path of func
args: list of argument values for func
visited: set of full paths of the analyzed functions

Ensure:
path is contained in visited
The target function func is analyzed by PyCT

1: if path is in visited then
2: return
3: end if
4: Add path to visited
5: for each arg in args do
6: if arg is of primitive type then
7: Upgrade arg to a concolic object
8: end if
9: end for

10: Invoke PyCT with func, path, args
11: if args contains concrete values then
12: repeat num fuzz times
13: Update concrete values in args using fuzzing
14: Invoke PyCT with func, path, args
15: end
16: end if

and security. Executing these functions with the new inputs
uncovers hidden defects and enhances code path exploration,
achieving higher line coverage and revealing vulnerabilities
that more straightforward testing methods might miss.

3.4. Dynamic Function Tracking with Fuzzing

Fuzzing and concolic testing offer distinct approaches to
uncovering software defects: while concolic testing system-
atically explores execution paths by combining symbolic
and concrete inputs, fuzzing generates a wide range of
random and mutated inputs to reveal edge cases through
unpredictability. Our tool enables the integration of DFT
with fuzzing, thereby enhancing DFT’s real-time monitoring
capabilities by injecting random inputs into each function
call captured. This combination leverages DFT’s detailed
tracking of function calls with fuzzing’s ability to uncover
defects that may remain hidden from the vanilla DFT.

More specifically, the fuzzing-integrated DFT follows the
same profiling and function-tracking setup as the standard
DFT, with one key addition: when the profiler detects a
function call, the fuzzer generates random inputs for non-
primitive data types that concolic testing cannot directly
cover. For example, in list, array, and tuple variables, the
fuzzer may insert random values of supported types, such as
str, float, int, and bool. These new inputs are then offered to
PyCT for further concolic testing of the target function. This
procedure is outlined in Algorithm 1, where a user-provided
parameter num fuzz specifies the maximal number of times
the fuzzer is invoked to explore the function. To avoid

unnecessary testing, our procedure records all functions that
have already been analyzed by storing their paths in visited.
In our experiment, we further reduce the number of fuzzy
tests using a heuristic: we invoke PyCT after fuzzing only
when the new input yields a return value different from the
previous return values of the tested function. The flowchart
of this procedure is given in Figure 3.

Conceptually, integrating fuzzing into DFT extends DFT’s
capabilities by exploring potential vulnerabilities that con-
colic testing alone might miss due to downgrading. While
fuzzing is inherently random and may not systematically
cover all paths, the randomness introduced by fuzzing can be
harnessed within concolic execution to enhance systematic
coverage analysis and broaden path exploration. Fuzzing’s
simplicity, flexibility, and ability to generate test inputs for
unsupported types make it a promising addition to DFT.
With effective guiding strategies to maximize input diversity
and relevance, fuzzing can potentially strengthen vulnera-
bility detection and provide a more comprehensive testing
framework.

4. Empirical Evaluation

We implemented our dynamic testing approach as an exten-
sion of PyCT1 and empirically evaluated its effectiveness
from several perspectives:

• Number of called packages and modules. These
two metrics represent how many packages and mod-
ules are used during the testing of the package.
A higher count indicates a greater dependency on
external libraries. If these libraries have any issues
(e.g. version incompatibility, deprecation, or vulner-
abilities), the program might fail to run properly. Ad-
ditionally, using more imported packages can affect
the portability of the program, as different systems
and environments might support different libraries. If
the required packages are unavailable in a particular
environment, the program will not run. DFT can
identify such errors by not only testing the package
itself but also checking the security of the underlying
code it relies on.

• Overall lines executed. This metric represents the
code coverage for all Python scripts called during
the testing process. It provides a holistic view of the
total lines of code executed across the entire Python
environment.

• In-library lines executed. This metric measures the
code coverage specific to the library under test. It
focuses on the effectiveness of the test in covering
the target library’s codebase.

• Input number. This denotes the number of inputs
used during the execution of a unit test. For the
baseline, it corresponds to the number of unit-test

1. The source code and scripts for this evaluation are available on https:
//github.com/incite-admin/pyct-profiler.



Figure 3. Dynamic Function Tracking with Fuzzing

cases available in the library. This metric helps un-
derstand the extent of test-case utilization and input
variety during testing. For DFT, it indicates how
many additional inputs these methods can generate
for testing.

• PyCT invocations. This metric counts the num-
ber of times PyCT was invoked during the testing
process. It provides insight into the behavior and
efficiency of PyCT in handling the test execution.
Additionally, during the analysis of functions and
the attempt to generate new inputs, PyCT relies on
a solver to resolve constraints, which can result in
either SAT (satisfiable) or UNSAT (unsatisfiable) or
timeout (the solver fails to find a solution within
the allotted time.). If the result is SAT, a new input
is successfully generated and re-injected into the
original function for execution. The outcome leads
to either an execution success or a triggered error.

• Execution success. This refers to the number of
successful executions when the generated test inputs
are re-injected into the original function for testing.

• Triggered error. This indicates the number of errors
triggered during the execution of the unit test. This
metric is crucial for evaluating the robustness and
reliability of the library when subjected to testing.

• Timeout. This indicates the frequencies of PyCT
exceeding 600 seconds during the testing process. A

higher value suggests that the constraints generated
based on the branches within the function are more
complex.

Our experiment compares these performance metrics of
Python’s unittest library and DFT,2 with and without
fuzzing, using various test suites. We address the following
research questions in our evaluation:

• RQ1: Exploration. How does DFT perform com-
pared to IFT and unittest regarding code coverage
and checking dependency on external libraries?

• RQ2: Error detection. How does DFT perform
compared to unittest regarding identifying errors
related to external library dependencies and overall
code robustness?

• RQ3: Performance. How efficient is DFT in gen-
erating additional inputs and handling complex con-
straints during testing?

• RQ4: Fuzzing efficacy. How does fuzzing benefit
DFT in generating additional inputs and handling
complex constraints during testing?

2. We did not conduct separate experiments for IFT, since the capability
of IFT is strictly subsumed by DFT.



4.1. Benchmark

Our test suites include popular Python libraries and a neural
network inference algorithm.

• Jsonschema: a package that describes the structure
of JSON data, enabling developers to validate JSON
objects against predefined schemas.

• OpenAI: this package serves as a standard for ex-
perimental purposes, primarily used for testing APIs
and handling input prompt content in local applica-
tions.

• Transformers: a versatile library for natural lan-
guage processing tasks, offering pre-trained models
and tools for text generation, translation, and sum-
marization. The baseline testing uses its built-in unit
test cases.

• Numpydoc: a documentation generation tool for
NumPy-style doc-strings, crucial for maintaining
comprehensive and standardized documentation in
scientific and analytical Python libraries. Its baseline
testing also relies on built-in unit test test cases.

• CNN Inference: we tested a single invocation of a
CNN model’s predict function using pre-established
data and model. This experiment evaluates DFT’s
capability to test an entire package from a single crit-
ical function call. The CNN model is implemented
with Keras, and all numerical results are based on
Keras as the target package for experimentation.

For each test suite, the experimental results are divided into
three categories: Python’s unittest library (as the baseline),
DFT, and DFT+Fuzz. The baseline coverage is determined
by executing the test cases included in the suite. The DFT
coverage is assessed by running PyCT with the DFT en-
hancement. The DFT+Fuzz coverage is measured by run-
ning the DFT coverage combined with the fuzzing method.
The results are outlined in Table 1.

4.2. Experimental Results

4.2.1. RQ1: Exploration. DFT demonstrated significant
improvements in code coverage and dependency checking
compared to the baseline unit tests across all benchmarks.
In the Jsonschema and OpenAI benchmark, the numbers of
packages and modules called and in-library lines covered all
increased drastically with the application of DFT, indicating
enhanced code coverage and more thorough checking of ex-
ternal library dependencies. The Transformers and Numpy-
doc packages also exhibited significant improvements in
code coverage when tested with DFT. The CNN inference
experiment, which had a single invocation of the predict
function, also showcased DFT’s effectiveness in maintaining
testing standards even with minimal code and unit test cases.

Across all benchmarks, DFT consistently outperformed the
baseline unit tests in terms of code coverage and dependency
checking. The increased number of called packages and

modules, along with the higher percentage of in-library lines
covered, highlights DFT’s effectiveness in enhancing test
comprehensiveness and identifying potential issues arising
from interactions between the tested package and its depen-
dencies. These findings suggest that DFT is powerful for
improving code coverage and dependency checking, regard-
less of the type of package being tested or the availability of
comprehensive unit test cases. The ability to maintain high
testing standards even with minimal initial inputs makes
DFT particularly valuable in scenarios where traditional unit
testing may be limited.

4.2.2. RQ2: Error detection. DFT significantly enhanced
the identification of errors related to external library de-
pendencies and improved overall code robustness compared
to the baseline unit tests across all benchmarks. In the
Jsonschema and OpenAI packages, DFT increased the num-
ber of triggered errors by orders of magnitude compared
to the baseline unit tests. Similarly, the Transformers and
Numpydoc packages saw substantial increases in triggered
errors when tested with DFT.

The CNN inference experiment, which had an extremely
limited baseline of a single predict function invocation,
showcased DFT’s ability to generate a large number of
error-triggering inputs despite the scarcity of unit test cases.
Interestingly, the number of triggered errors significantly ex-
ceeded the number of successful executions in this scenario.

Across all benchmarks, DFT consistently and often dramat-
ically increased the number of triggered errors compared
to the baseline unit tests. These results highlight DFT’s
effectiveness in uncovering errors related to external library
dependencies and robustness issues that the baseline tests
failed to identify. The CNN inference case further empha-
sizes DFT’s capability to generate numerous error-triggering
inputs even in scenarios where unit tests are extremely
limited.

4.2.3. RQ3: Performance. DFT demonstrated exceptional
capability in generating additional test inputs across all
benchmarks, albeit at the cost of increased execution time
due to the complexity of constraint handling. For example,
in the tests of Jsonschema and OpenAI, DFT generated 1877
and 3067 additional inputs, respectively. However, Json-
schema incurred 3306 timeouts of 600 seconds each, and
OpenAI 1410 timeouts caused by constraint solving. Simi-
larly, while DFT generated 2416 and 5539 additional inputs
for the Transformers and Numpydoc packages, respectively,
the time cost associated with these additional inputs was
also substantial. The CNN inference experiment stood out
as an exception, where DFT efficiently generated additional
inputs without encountering any timeouts, possibly due to
the characteristics of the tested package (Keras).

In summary, while DFT excels in generating additional test
inputs, the efficiency of this process is highly dependent
on the complexity of the constraints encountered during
testing. The trade-off between the benefits of increased input



TABLE 1. EXPERIMENTAL RESULTS ON TESTING JSONSCHEMA, OPENAI, TRANSFORMERS, NUMPYDOC, AND CNN INFERENCE

Jsonschema OpenAI Transformers
Metric unittest DFT DFT+Fuzz unittest DFT DFT+Fuzz unittest DFT DFT+Fuzz
package numbers 8 37 37 20 67 68 47 62 64
module numbers 50 123 125 144 399 405 382 550 554
overall lines executed 4090 45768 46440 31049 97973 98003 120,710 280,218 280,302
in-library lines executed 3125 5684 5803 666 2224 2243 31,194 45,906 45,920
PyCT invocations N/A 9213 9130 N/A 13754 13818 N/A 10,169 10,212
input numbers 473 2350 2346 53 3120 3144 2,501 4,439 4,461
execution successes 471 1069 1066 44 2700 2711 2,023 3,600 3,618
triggered errors 2 1281 1280 9 420 433 478 839 843
timeouts N/A 3306 3304 N/A 1410 1415 N/A 5,730 5,751

Numpydoc CNN Inference
Metric unittest DFT DFT+Fuzz unittest DFT DFT+Fuzz
package numbers 29 48 48 28 52 54
module numbers 244 295 297 180 311 315
overall lines executed 44,203 96,180 96,209 122,016 202,204 202,821
in-library lines executed 2,194 2,593 2,597 14,921 17,012 17,354
PyCT invocations N/A 15,199 15,226 N/A 3,435 3,468
input numbers 253 5,792 5,784 1 2,434 2,448
execution successes 250 3,560 3,556 1 676 678
triggered errors 3 2,232 2,228 0 1,758 1,770
timeouts N/A 237 241 N/A 0 0

generation and the associated time costs should be carefully
considered when applying DFT in practice.

4.2.4. RQ4: Fuzzing efficacy. We assessed the integration
of fuzzing into DFT to evaluate its effect on unit tests. In our
experiment, we simply generated legitimate random values
of supported types, namely int, float, str, and boolean. The
results across different benchmarks (listed in the DFT+Fuzz
columns) reveal that these random inputs generally increased
the number of inputs, such as in the OpenAI and Numpydoc
tests. However, in the Jsonschema test, the input count
actually decreased slightly when fuzzing was enabled. This
suggests that the random guessing in our fuzzing approach
is not consistently effective. In addition, while fuzzing oc-
casionally contributed to exploring new paths, it also led
to a slight increase in timeouts, as seen consistently across
benchmarks like Transformers and Numpydoc. This increase
in timeouts indicates that the random inputs generated by the
basic fuzzing technique might not always lead to meaningful
exploration and could, in some cases, prolong execution
without yielding new paths or constraints.

While the improvements in coverage from fuzzing were
modest in our experiment, this is likely due to the limitations
of the random guessing method employed. Literature sug-
gests that more advanced techniques, such as mutation-based
or coverage-guided fuzzing (cf. [20], [21]), could potentially
enhance the effectiveness of DFT. Future work will focus
on integrating these more sophisticated fuzzing methods to
achieve a balance between input diversity and execution
efficiency.

4.2.5. Summary. Overall, DFT significantly increases code
line coverage with minimal unit test inputs, effectively tests
dependencies on external libraries, and generates inputs that
trigger numerous errors and assertions in both the tested

code and its dependent libraries. The integration of fuzzing
also broadens the testing scope. The improvements were par-
ticularly noticeable in packages with complex dependencies,
such as Transformers and CNN inference models, where
DFT significantly increased the number of triggered errors
and exposed hidden vulnerabilities. However, the benefits
of applying DFT can come at the cost of longer execution
times and more timeouts. These findings suggest that while
DFT offers capabilities in improving code coverage and
error detection, careful consideration is crucial for practical
implementation in software development workflows.

5. Threats to Validity

Our dynamic testing approach aims to mitigate the limita-
tions of traditional concolic testing. However, certain threats
to its validity arise from the operational assumptions under-
lying DFT, which may impact its effectiveness in practice.

A primary threat to the validity of DFT lies in its reliance
on dynamic profiling to extract constraints from external
functions and unsupported operations. The accuracy of the
symbolic constraints derived during this phase is contingent
on the comprehensiveness of the profiling data. If the profil-
ing fails to capture the full range of possible behaviors due
to insufficient execution traces or limited runtime data, the
generated constraints may misrepresent the true behavior of
the functions. Additionally, certain external functions may
exhibit dynamic behavior influenced by external states, such
as network conditions or system time, which makes reliable
profiling particularly challenging.

Another concern is the potential for performance overhead
introduced by the dynamic profiling process. While DFT
attempts to enhance path coverage by addressing symbolic
downgrading, the added computational cost of profiling and



processing external calls may limit its scalability, particu-
larly in systems with extensive use of external libraries.
Finally, Python’s dynamic and flexible features, such as
metaprogramming and runtime modifications, may lead to
scenarios where DFT struggles to maintain symbolic rep-
resentations effectively. The success of DFT in resolving
unsupported operations depends heavily on its ability to
handle the diverse and evolving nature of Python’s libraries
and external APIs. Incomplete or outdated handling of such
constructs could reduce the applicability and robustness of
the technique.

6. Conclusion

In this study, we have explored the efficacy of integrating
concolic testing with runtime profiling in software testing.
By dynamically monitoring function calls and wrapping
the called functions, we extended the capabilities of the
PyCT framework in scenarios involving external dependen-
cies on Python libraries. The experimental results validate
our approach’s ability to enhance code coverage and error
detection, surpassing traditional unit testing methods. How-
ever, the trade-off between increased coverage and longer
execution times remains challenging.

Our future research will pursue three key directions. First,
we plan to incorporate more advanced fuzzing techniques
such as mutation-based and coverage-guided fuzzing to
improve input generation and path exploration. Second,
we will develop a graphical interface that visualizes the
testing process in real-time, enabling developers to better
understand test coverage and track error detection. Finally,
we will extend our concolic engine to handle a broader range
of data structures and operations.
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