
Concolic Testing on Inference Decision Logic of
Neural Network Models

Chih-Duo Hong1, Wang Yu1, Yao-Chen Chang2, and Fang Yu1

1 National Chengchi University, Taiwan
2 Academia Sinica, Taiwan

Abstract. Concolic testing for deep neural networks alternates concrete
execution with constraint solving to search for inputs that flip decisions.
We present an influence-guided concolic tester for Transformer classi-
fiers that ranks path predicates by SHAP-based estimates of their im-
pact on the model output. To enable SMT solving on modern archi-
tectures, we prototype a solver-compatible, pure-Python semantics for
multi-head self-attention and introduce practical scheduling heuristics
that temper constraint growth on deeper models. In a white-box study
on compact Transformers under small L0 budgets, influence guidance
finds label-flip inputs more efficiently than a FIFO baseline and main-
tains steady progress on deeper networks. Aggregating successful attack
instances with a SHAP-based critical decision path analysis reveals re-
curring, compact decision logic shared across attacks. These observa-
tions suggest that (i) influence signals provide a useful search bias for
symbolic exploration, and (ii) solver-friendly attention semantics paired
with lightweight scheduling make concolic testing feasible for contempo-
rary Transformer models, with potential utility for debugging and model
auditing.

1 Introduction

In the past decades, deep neural networks have achieved remarkable success
across various domains, including computer vision [1], speech recognition [2],
and game playing [3], drawing significant attention from both academia and in-
dustry [4]. By leveraging neural networks, complex systems that are difficult for
humans to design can be created, often outperforming traditional methods. How-
ever, the increasing use of neural networks in safety-critical and socially sensitive
areas raises significant concerns about their verification and security. Neural net-
work models, albeit trained on finite datasets, are expected to generalize to new
inputs. However, they can behave unexpectedly when faced with adversarially
crafted perturbations [5–7]. This unpredictability can lead to unsafe systems.
Manual inspection of large models is infeasible due to their complexity, necessi-
tating systematic and automated verification methods to ensure their reliability.

Significant efforts have been devoted to developing robust machine-learning
models that can withstand environmental noise and adversarial attacks [8].
Specifically, various program analysis techniques, from formal verification [9–12]

2 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

to automated testing [13–16], have been proposed to enhance the dependabil-
ity of AI systems. Although formal verification provides correctness guarantees,
its scalability on practical networks is often limited. As a complementary path,
we adopt concolic testing, where the tester alternates between concrete execu-
tion and SMT-based solving of path predicates to synthesize inputs [17,18]. The
objective is not certified worst-case robustness but the efficient discovery of con-
crete counterexamples. A central design choice in such testers is how to prioritize
which symbolic branches to solve next. Prior neural-network testing frameworks
often rely on coverage metrics, such as neuron coverage and contribution cov-
erage [19,20]. However, these metrics treat neurons equally without considering
their relative importance in the model’s decision-making process, which often
leads to inefficient exploration of model behaviors and missed critical vulnera-
bilities [21,22].

To address this prioritization challenge within our concolic testing loop, we
leverage SHAP (SHapley Additive exPlanations) values [23–25] to estimate the
influence of neurons on the current decision and to rank the corresponding branch
predicates. This influence-guided strategy focuses solver calls on high-leverage
parts of the model, prioritizing predicates expected to affect the output while de-
ferring less informative branches. We further adopt the notion of abstract critical
decision path [26], which summarizes recurring decision logic behind adversarial
inputs and highlights neurons that frequently contribute to misclassification.

The emergence of Transformers [27] has posed new challenges for neural
network testing [28–31]. Their unique attention mechanisms make them less
amenable to traditional testing methods designed for simpler architectures like
CNNs and RNNs. Our approach extends concolic testing to generate adversar-
ial examples specifically for Transformer models. Prior constraint-based Trans-
former verification methods rely on convex relaxations/abstract interpretation
or MILP encodings [28, 30]. To the best of our knowledge, our work offers the
first (SMT-backed) concolic testing method that supports standard multi-head
self-attention with softmax, thereby making constraint-based testing viable for
Transformer architectures.

We conduct a preliminary empirical study of our influence-guided concolic
testing on compact Transformer classifiers. For each seed input, we search for
label flips by solving path constraints under bounded perturbations (e.g., 1–2
pixel edits of the input image) and a fixed per-seed time bound. Relative to a
FIFO baseline, prioritizing branch predicates by SHAP-based influence improves
search quality. On a single-layer Transformer we obtain 67 successful one-pixel
attacks and 6 successful two-pixel attacks. On a deeper two-layer Transformer,
two simple scheduling heuristics—layer-prioritized exploration and time-capped
constraint building—help maintain steady progress under tight budgets. Finally,
aggregating successful cases with our SHAP-based abstract critical decision path
(ACDP) analysis reveals shared decision logic: with α = 20% and β = 0.5, 245
of 4,430 neurons are marked critical for more than half of the adversarial inputs.

Contributions. We list our current contributions below.

Concolic Testing on Inference Decision Logic of Neural Network Models 3

1. Influence-guided concolic testing. We integrate SHAP-based influence
into the concolic loop to rank path constraints by estimated impact on model
decisions, steering SMT solving toward higher-leverage branches.

2. Decision-logic synthesis. We instantiate a SHAP-based ACDP analysis to
summarize common failure mechanisms across adversarial inputs, surfacing
compact sets of neurons that may guide debugging and repair; the evidence
is preliminary but suggests recurring decision logic across successful attacks.

3. Prototype Transformer support with practical scheduling. We pro-
vide a solver-compatible semantics for multi-head self-attention (including
softmax) within PyCT and introduce simple scheduling heuristics that trade
off influence against constraint complexity on deeper models.

The rest of this paper is organized as follows. Section 2 surveys related work
on constraint-based verification and testing of neural networks. Section 3 presents
our influence-guided concolic testing framework, including SHAP-based predi-
cate prioritization, a solver-compatible pure-Python semantics for multi-head
self-attention, and the SHAP-based abstract critical decision path analysis. Sec-
tion 4 reports preliminary experiments on compact Transformer classifiers, in-
cluding ablations of two scheduling heuristics and a brief comparison with Deep-
Concolic. Section 5 concludes with limitations and directions for future work.
The appendix provides the step-by-step attention semantics used by our proto-
type.

2 Related Work

Recent research demonstrates growing interest in employing constraint solvers
to verify and test neural networks [32–36], where these solvers are applied to rig-
orously analyze complex decision boundaries and validate critical input-output
relationships. Neural network verification through constraint solvers entails en-
coding network operations and constraints into logical formulations for solver
analysis [8,37]. Pioneering constraint-solving frameworks such as Reluplex [9] and
Marabou [12] have been pivotal in verifying feedforward networks with ReLU
activations [38]. These tools formally validate a network model by identifying
counterexamples to a specification or confirming compliance. To address the scal-
ability challenges inherent in constraint-based approaches, various enhancements
have been proposed, including symbolic reasoning [39], quantization [40,41], and
abstract interpretation [13,15].

In addition to formal verification, constraint solvers have also been adopted
to generate test cases systematically. Sun et al. [42] pioneered using a constraint
solver to maximize neuron coverage in test case generation. This concept was
implemented in DeepCover [43] and DeepConcolic [44], which employed concolic
execution to balance between test coverage and efficiency. Our work distinguishes
itself from these approaches: While DeepCover and DeepConcolic focus exclu-
sively on feedforward networks with ReLU activation, our tool extends concolic
testing capabilities to sigmoid and tanh activations. Furthermore, existing tools

4 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

generate test cases that maximize coverage, which might be ineffective for dis-
covering adversarial vulnerabilities [21]. Specifically, DeepConcolic formulates
neuron coverage as an optimization problem and generates constraints over in-
put variables based on the neurons to activate. By contrast, PyCT computes
path constraints induced by the attacked input variables and explores only the
network behaviors affected by these variables. This approach arguably aligns
more closely with the logical flow of input-output specifications, making our tool
particularly suitable for applications requiring contract-based [45] and feature-
specific adversarial testing [46].

Our testing framework exploits Shapley values (via DeepSHAP [47]) to attack
the most influential input variable and explore the most influential branches. In
comparison, gradient-based attacks [29,31,48–51] target features with large gra-
dient values, assuming they have high sensitivity to prediction changes. Gradient-
based methods are computationally efficient and applicable across diverse net-
work architectures. However, they often lack interpretability and can be suscep-
tible to gradient noise and local optima [48]. Our integration with DeepSHAP
selects features directly based on their impacts on model behaviors, arguably
offering more explainability and robustness. This capability positions our frame-
work as a complementary alternative to traditional methods.

Besides gradient-based testing, coverage-guided fuzzing has also been widely
utilized to uncover vulnerabilities in neural networks [52–54]. However, conven-
tional neuron coverage does not account for the varying significance of neurons in
influencing model outputs, making them ineffective in searching for adversarial
examples [21]. Recent tools such as CriticalFuzz [55] incorporate the informa-
tion of “critical neurons” in the selection and mutation of seed inputs, thereby
achieving higher error detection rates compared to traditional fuzzing techniques.
Specifically, neuron path coverage [26] measures the relevancy of test cases based
on decision logic, motivating our influence-guided concolic testing approach. Its
concept of critical decision paths is employed in our work to identify the most
essential neurons, where we utilize SHAP values to prioritize branch constraints
based on their impact on model decisions.

Prior concolic testing frameworks for neural networks either target FNN/CNN
architectures [17,19,36] or present general-purpose engines without Transformer-
specific reasoning [18, 56–59]. To the best of our knowledge, no existing work
integrates concolic/symbolic path-constraint solving with the internals of Trans-
former attention blocks [27] to automatically synthesize adversarial inputs; our
work is, therefore, the first concolic testing approach explicitly designed for and
demonstrated on modern Transformer architectures.

3 Methodology

3.1 Object-Oriented Concolic Testing

We briefly revisit the concolic testing algorithm that serves as the foundation
of PyCT [17,18,36]. This algorithm is built upon an architecture that elegantly

Concolic Testing on Inference Decision Logic of Neural Network Models 5

1 def i s P a l i n d r ome (i n t x) :

4 whi l e z > 0 :

6 + z 10

2 y = 0
3 z = x

5 y = l s h i f t (y)

7 z = r s h i f t (z)
8 i f y == x :
9 re turn True
10 e l s e :
11 re turn F a l s e
12 def l s h i f t (x) :
13 re turn x 10
14 def r s h i f t (x) :
15 re turn x / / 10

ψ1 := (x > 0)

n1

ψ2 := (0 == x)

n2

ψ3 := (x//10 > 0)

n3

ψ4 := (x%10 == x)

n4

x := −1 x := 0

No solutions. x := 1

. . .

F T

FF T

F T

T

Q0 : Q1 : ψ1 Q2 : ψ1 ¬ψ1 ∧ ¬ψ2

Q3 : ¬ψ1 ∧ ¬ψ2 ψ1 ∧ ψ3 Q4 : . . .

Fig. 1: A concolic testing example from Chen et al. [18]. Left: A program for
checking if x is a palindrome. Right: The tree T and queue Q of the concolic
testing process on the program.

integrates symbolic execution with Python’s dynamic and object-oriented model
[59]. The core idea behind the algorithm is to substitute basic Python data types
(such as integers and strings) with concolic objects, which maintain both concrete
and symbolic representations. Each concolic object includes two components: a
concrete value and a symbolic expression representing the value in terms of
input variables. For instance, a concolic integer ca might be represented as ca =
(2, x + 1), where 2 is the concrete value of the integer variable a, x is an input
variable, and x+1 is an expression depicting the relationship between the variable
a the and the input variable x, namely, a = x+ 1.

The algorithm operates by overriding the member functions of Python’s stan-
dard data types with concolic versions that support both symbolic and concrete
computations. Following the previous example, an overridden member function
ca.f() of the concolic integer cx would update the concrete value 2 of ca in the
same way that the original function a.f() does, and update the symbolic ex-
pression x+ 1 to a new expression that captures the semantics of invoking f on
a = x + 1. This design allows the concolic tester to handle Python’s rich set of
operations while maintaining symbolic representations wherever possible.

During testing, the algorithm utilizes concolic objects to track and update
constraints in program execution. For each path executed, the algorithm main-
tains a path condition tree T and a queue Q of unexplored branches (Figure 1).
The tree T records all explored paths by maintaining nodes with constraints
encountered during execution. Simultaneously, Q stores formulas representing
unexplored branches, which are derived by negating conditions in the current
path. For every decision point in the tested code (such as an if statement),
the algorithm creates a symbolic condition. If the current path takes the “false”
branch, the condition for the “true” branch is negated and added to the queue Q.
This queue holds unexplored branches that are yet to be tested. The strength of
this approach lies in its ability to refine both T and Q iteratively. Each iteration
draws a formula from Q, solves it using an SMT solver, and generates new in-

6 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

puts that guide the subsequent program execution down previously unexplored
paths. By continuously updating T with new path constraints and expanding Q
with new branch conditions, the algorithm incrementally generates new inputs
to cover more code paths and detect potential program faults.

The order in which constraints are picked from the queue Q is crucial for this
algorithm’s performance. Although simple strategies like first-in-first-out can be
adopted, a more intelligent approach that prioritizes more relevant constraints
can lead to faster convergence and improved efficiency. As a result, selecting
a suitable order for processing Q remains an essential issue in optimizing the
search process.

3.2 Influence-Guided Concolic Testing

To target the most critical decisions in altering the model outcome, it is necessary
to establish a computable ordering over the branch conditions. To this end, we
assign to every branch condition an influence value derived from the SHAP value
of the associated neurons. The core idea of the influence calculation is as follows:
any branch condition, such as an if statement, must be evaluated during the
computation of the values for a set of neurons. In other words, for any branch
condition b, there should be a list of associated neurons assocNeurons(b) for
which the branch condition b is evaluated.

Moreover, for a given seed input x, every neuron n in layer l, we should
be able to compute shap(n, x) by taking the SHAP values of n at x within
the submodel spanning from layer l to the output layer, averaged by all the
output neurons. With both assocNeurons and shap, each branch condition can
be associated with a SHAP-based influence, defined as:

influ(b | x) := avg({ shap(n, x) | n ∈ assocNeurons(b) }) (1)

The function influ(b | x) calculates for branch b the average SHAP values of its
associated neurons on the output neurons at seed input x, indicating the general
influence of b on the output at x.

Having established the ordering on the branch conditions, we propose a strat-
egy to process the queue Q for PyCT, as depicted in Algorithm 1. Below, we
explain the three most important operations in our SHAP-based path explo-
ration.

Registering associated neurons during forwarding computations. In the forward
computation within our translated models, the associated neurons are registered
to the module to reflect the neurons targeted by the current computation. For
each instruction in a forwarding function, the associated neurons are determined
as follows: if the instruction involves the assignment of an output neuron of
the layer, that output neuron is assigned as its only associated neuron; if an
non-output variable is assigned, the associated neurons are the output neurons
affected by this variable; otherwise, the associated neurons comprise the entire
set of output neurons of the layer.

Concolic Testing on Inference Decision Logic of Neural Network Models 7

Algorithm 1 Influence-based concolic testing
1: Input
2: Python function f : {arg_name : float} → any
3: seed input x0 : {arg_name : float | ConcolicFloat}
4: Output
5: a map x′ : {arg_name : float} such that x′ ̸= x0 and f(x′) ̸= f(x0)
6: Procedure
7: y′ ← f(x0)
8: x′ ← x0

9: branches_to_explore← new PriorityQueue()
10: Do
11: (y′, bypassed_branches)← concolic_execution(f, x′)
12: If (x′ ̸= x0 and y′ ̸= f(x0))
13: Return x′

14: Foreach branch in bypassed_branches
15: branches_to_explore.push (branch.predicate, influ(branch | x′))
16: While branches_to_explore is not empty
17: predicate← branches_to_explore.popMax()
18: Match solver.check(predicate)
19: Pattern UNSAT
20: Continue
21: Pattern SAT(solution)
22: x′ ← solution
23: Break
24: While branches_to_explore is not empty

Calculating the influence of all neurons. PyCT computes the influence of a neu-
ron based on SHAP values. Originally, the SHAP value is a real-valued function,
shap(i, o, x | M,X), assuming a model M and a background dataset X for ref-
erence,3 defined for an input neuron i of M , an output neuron o of M , and an
input data point under test x. Based on this definition, we construct a real-valued
function shap(n, x | M,X) that computes the influence of a general non-output
neuron n at layer l for the output at x, given by:

shap(n, x | M,X) :=

avg({ ∥shap(n, o,M≤l(x) | M>l,M≤l(X))∥ | o ∈ M.output })

Here, M≤l denotes the submodel of M up to layer l and is used to transform the
input x and background dataset X, whereas M>l is the submodel of M after
layer l that includes neuron n as one of its input neurons. This ensures that
the calculation of the SHAP value is well-defined and consistent. In the actual
3 Influence ranks depend on the background dataset used to compute SHAP values.

In our experiments, we sample a fixed background set from the training distribution
and compute SHAP once per model prior to search (Algorithm 2). In practice, using
different background sets may change the order of some predicates, but it does not
invalidate the search loop.

8 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

Algorithm 2 Inner-SHAP influence calculation
1: Input
2: model M
3: background dataset X
4: seed input x
5: Output
6: a map influences of type {(layer_number, indices) : float}
7: Procedure
8: influences← new Map()
9: M>l ←M

10: Xl ← X
11: xl ← x
12: for l = 0, . . . , ∥M .layers∥ − 1:
13: for n ∈M .layers[l]:
14: i ← avg({∥shap(n, o, xl |M>l, Xl)∥ | o ∈M.output})
15: influences.set((l, n), i)
16: if M .layers[l + 1] == M .output :
17: break
18: xl ← apply_first_layer(M>l, xl)
19: Xl ← apply_first_layer(M>l, Xl)
20: M>l ← remove_first_layer(M>l)
21: return influences

implementation, shap is computed for all neurons in advance of all iterations as
described in Algorithm 2.

Pushing branch conditions into the priority queue by SHAP-based influence. As
shown in Algorithm 1, the goal of Line 15 is to execute the target model f
at a given input x′ (consisting of possibly concolic values), while recording the
predicate expressions of bypassed branches, which are encountered but not en-
tered. These predicate expressions are then added to the priority queue. In each
iteration, constraints are continually popped from the priority queue until a sat-
isfiable constraint is found. The solution of this constraint is then used as the
input for the next iteration. If none of the constraints are satisfiable, the program
terminates.

Queue invariants and termination. The priority queue in Algorithm 1 stores
negations of bypassed predicates keyed by influence. Each iteration either (i)
discovers a new concrete path (possibly a flip) or (ii) removes at least one pred-
icate as UNSAT. With finite time/memory budgets, the loop terminates when
the queue drains or when the global budget expires. In the absence of budgets
and with a fair solver, the process is semi-complete: every satisfiable predicate
in the reachable region will eventually be attempted; however, we make no claim
of full path coverage due to path explosion.

Soundness boundary and validation oracle. Our engine proposes inputs by solv-
ing symbolic path predicates, but always validates them by re-executing the

Concolic Testing on Inference Decision Logic of Neural Network Models 9

Fig. 2: A running example on a single-layer transformer

original model concretely. Hence, any reported label flip corresponds to an ac-
tual behavioral change of the given model under the chosen implementation.
Indeed, if the testing loop returns an input x′ with f(x′) ̸= f(x0) (Algorithm
1, Line 13), then this inequality holds for a concrete execution of the original
model f . Therefore, a reported counterexample cannot be spurious.

3.3 Testing the Transformer Architecture

We propose to employ the PyCT tester to scrutinize Transformer models [27]
based on SMT reasoning. However, PyCT currently only supports basic Python
syntax and data types [18], and thus cannot handle libraries such as NumPy
and Tensor used in modern Transducer implementations. To overcome this, we
realized the Transformer model using basic Python syntax, eliminating depen-
dencies on external libraries. The implementation involves rewriting the Keras
Transformer model, particularly the multi-head attention layer, with fundamen-
tal Python constructs.

In the rest of this section, we demonstrate how PyCT computes an adver-
sarial input for a Transformer model implemented in pure Python (Figure 2).
Suppose that the seed input is [[2], [1]], which leads to a model prediction of class
10. We set the initial concolic value as [[(2, v)], [1]] and feed it into the tested
Transformer. During the model computation, if an if-then-else statement is exe-
cuted with boolean-valued concolic expressions, we add the bypassing conditions

10 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

Algorithm 3 Function for transforming and splitting
1: function tas(vectors, weights, bias):
2: for i = 0, . . . , num_heads− 1
3: for j = 0, . . . , key_dim_per_heads− 1

4: outputs[i][j]←
∑model_dim

k=0 (weights[k][i][j]× vectors[k]) + bias[i][j]
5: return outputs

to the priority queue. These conditions are then prioritized based on SHAP val-
ues and popped as predicates for the SMT solver to solve. If an input directs the
execution to an alternate branch of the if-then-else statement, PyCT re-runs the
test with the new input. This process repeats until the output label changes.

Transforming and splitting of input sequence. In a single forward pass, the in-
put sequence is first linearly transformed separately by weight matrices WQ,
WK , WV and bias matrices BQ, BK , BV , resulting in attention matrices Q,
K, V . The operational details are outlined in Algorithm 3. To compute Q, K,
V , PyCT first needs to compute tas(input,WQ, BQ), tas(input,WK , BK), and
tas(input,WV , BV). Specifically, suppose that

input = [J2, vK, [1]] num_heads = 1 key_dim_per_heads = 2

seq_len = 2 model_dim = 1 WQ = [[[1, 1]]]

WK = [[[2, 1]]] WV = [[[1, 2]]] WO = [[[1], [1]]]

BQ = [[1, 1]] BK = [[2, 1]] BV = [[1, 2]]

BO = [1,]

We use J2, vK to denote a concolic variable such that 2 is the concrete value
and v is the symbolic variable. Let w000 represent WQ[0][0][0], w001 represent
WQ[0][0][1], b00 represent BQ[0][0], and b01 represent BQ[0][1]. For attention Q,
the concolic computation by Algorithm 3 gives

[[w000 × J2, vK + b00, w001 × J2, vK + b01], [w000 × 1 + b00, w001 × 1 + b01]]

= [[1× J2, vK + 1, 1× J2, vK + 1], [1× 1 + 1, 1× 1 + 1]]

= [[J2, vK + 1, J2, vK + 1], [2, 2]]

Thus, the resulting concolic value of attention Q is [[J2, vK+ 1, J2, vK+ 1], [2, 2]].
Attentions K and V are computed similarly. After this step, the concolic values
of attentions Q, K, and V are as follows:

Concolic matrix of Q: [[J2, vK + 1, J2, vK + 1], [2, 2]]

Concolic matrix of K: [[2 ∗ J2, vK + 2, J2, vK + 1], [4, 2]]

Concolic matrix of V : [[J2, vK + 1, 2 ∗ J2, vK + 2], [2, 4]]

Concolic Testing on Inference Decision Logic of Neural Network Models 11

Algorithm 4 Function for dot-product attention
1: function dpa(Q,K, V):
2: attention_scores← matrix_multiply(Q, KT)
3: attention_scores← [
4: [score/

√
key_dim_per_heads) for score in attention_score]

5: for attention_score in attention_scores]
6: attention← matrix_multiply(softmax(attention_scores), V)
7: return attention

Computing the dot-product attention. In this step, we compute the dot-product
attention based on the attention matrices Q, K, and V . Leveraging the query,
key, and value matrices derived from the input sequence, we meticulously com-
pute attention scores for each attention head. This computation is crucial in
identifying salient features within the input sequence, facilitating effective infor-
mation extraction. The operational details can be referred to in Algorithm 4.
Here, we calculate dpa(Q, K, V). Firstly, K undergoes a transpose operation.
Then, Q and KT are subjected to matrix multiplication (Algorithm 4, Line 3).
The resulting Q×KT operation yields:

[[Q00 ×KT00 +Q01 ×KT10, Q00 ×KT01 +Q01 ×KT11],

[Q10 ×KT00 +Q11 ×KT10, Q10 ×KT01 +Q11 ×KT11]]

After the calculation, the matrix becomes

[[3 ∗ J2, vK2 + 6 ∗ J2, vK + 3, 6 ∗ J2, vK + 6], [6 ∗ J2, vK + 6, 12]]

Each value in the matrix is then divided by the square root of the dimension of
the key, which in this case is 2. (Algorithm 4, Line 4). Upon applying softmax to
the attention mechanism as illustrated in Algorithm 4, we will invoke a standard
softmax implementation, as depicted in Algorithm 5. Subsequently, prior to ex-
ponentiation, each value is subtracted from its corresponding maximum value.
This procedure aims to maintain numerical stability and mitigate issues related
to overflow and underflow (cf. [4]).

In our example, when the softmax function is invoked, xmax = [(3 ∗ J2, vK2 +
6∗J2, vK+3)/

√
2, (6∗J2, vK+6)/

√
2]. Note that new constraints may be generated

here: Recall that in PyCT, whenever a boolean expression with concolic values
is evaluated, it triggers a branch listener that adds the negation of the current
constraint to the constraint queue. In this case, when the if-statement in the max
function is executed, it holds that x[0][1] < x[0][0] since (18/

√
2) < (27/

√
2).

PyCT thus pushes the first constraint φ1 : x[0][1] < x[0][0] into the priority
queue. And in the next row, x[1][1] < x[1][0], i.e., (12/

√
2) < (18/

√
2), PyCT

adds the second constraint φ2 : x[1][1] < x[1][0] into the constraint queue. More-
over, for the branch listener to determine the priority of the branches added, we
pass the positions of their associated neurons to the symbolic execution engine by
calling register_current_indices before every if-statement. Recall that the
calling of max(x, i) on i is used to calculate the i-th row of the attention_scores

12 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

Algorithm 5 Functions for performing softmax and max
1: function softmax(x):
2: xmax ← [max(x, i) for x[i] in x]
3: ex ← [[ex[i][j]−x_max[i] for x[i][j] in x]]
4: ex,sum ← [sum(ex[i]) for ex[i] ex]
5: result← [[ex[i][j]/ex,sum[i] for ex[i][j] in ex]]
6: return result

1: function max(x, i):
2: register_current_indices([(i, k) for k = 0, . . . ,model_dim− 1])
3: max← x[i][0]
4: for x[i][j] in x[i]:
5: if x[i][j] > max:
6: max← x[i][j]
7: return max

matrix, whose value at the end affects the i-th row of the output neurons of the
multi-head attention layer. Thus, the associated neurons here are assigned with
the i-th row of the output neurons, as in Line 2 of the max function, where
model_dim, the dimension of the input encoding, is the second dimension of
the output neurons.

Line 3 of the softmax function subtracts each element x[i][j] by its cor-
responding row’s maximum value xmax[i]. This step is crucial to prevent is-
sues such as exponential explosion or decay, as it stabilizes the computation.
Subsequently, each element is exponentiated. In our running example, we have
ex = [[exp(0), exp(3 − 3 ∗ J2, vK2)/

√
2)], [exp(0), exp(6 − 6 ∗ J2, vK)/

√
2)]]. Note

that our tool uses Python’s math.exp function for exponentiation, which cannot
handle concolic variables. Hence, all concolic variables inside exp(·) are down-
graded to concrete values, yielding a new matrix where each element represents
the weight of the corresponding element in x relative to the maximum value of
its row. In our example, it leads to ex = [[1, exp((−9)/

√
2)], [1, exp((−12)/

√
2)]].

Next, the elements of ex are summed for each row, resulting in a new matrix
ex,sum where each element represents the total weight of its row. Finally, each
element in ex is divided by the corresponding row’s total weight to obtain the
final output of the softmax function, i.e., the normalized probability values: 1

1+exp(−9/
√
2)

exp(−9/
√
2)

1+exp(−9/
√
2)

1
1+exp(−12/

√
2)

exp(−12/
√
2)

1+exp(−12/
√
2)

 ≈
[
0.998 0.002
0.986 0.014

]
The final step in the dot-product attention involves matrix multiplication

between the computed attention scores and the attention values, as illustrated
in Line 5 of Algorithm 4. The matrix multiplication of the attention scores and
attention values (the symbolic result of dpt(Q, K, V)) is computed as follows:

attentions = [[0.998 ∗ J2, vK + 1.002, 1.996 ∗ J2, vK + 2.004],

[0.986 ∗ J2, vK + 1.014, 1.972 ∗ J2, vK + 2.028]]

Concolic Testing on Inference Decision Logic of Neural Network Models 13

Algorithm 6 Function for concatenating and transforming
1: function concat(attentions, weights, bias):
2: n← num_heads
3: m← key_dim_per_heads
4: for word = 0, . . . , seq_len− 1
5: for i = 0, . . . ,model_dim− 1

6: outputs[word][i]←
n∑

j=0

m∑
k=0

(attentions[j][word][k]×weights[j][k][i])+bias[i]

7: return outputs

Concatenation and transformation of attention heads. After computing atten-
tion scores, the individual attention heads’ results are concatenated and further
transformed to produce the final output sequence. This process involves the care-
ful aggregation of attention head outputs and their transformation using out-
put weights and biases. It ensures the integration of information from multiple
heads into a coherent representation of the input sequence. Algorithm 6 gives the
code of this computation. Here, the result of concat(attentions, [[[1], [1]]], [1,])
is [[2.994 ∗ J2, vK + 4.006], [2.958 ∗ J2, vK + 4.042]].

Following the aforementioned multi-head attention layer, the computation
process continues through subsequent flatten, reshape, and dense layers. The
calculation flow of the concolic variable within these layers is analogous to the
previously described algorithm.

Under-approximation due to downgrading PyCT computes exponentiation us-
ing Python’s math.exp to maintain SMT reasoning within tractable fragments.
Concolic terms inside math.exp are downgraded to their concrete values, yield-
ing an under-approximate symbolic semantics for attention: the solver explores a
subset of feasible branches around attention logits, and may therefore miss some
flips. Nevertheless, any satisfying assignment that survives concrete re-execution
is a valid counterexample.

3.4 SHAP-based Abstract Critical Decision Path Synthesis

Finally, we analyze the set of adversarial inputs by applying a variant definition
of the abstract critical decision path in [26]. Specifically, assuming a classification
model M and a background input dataset X (for calculating SHAP value), our
calculation proceeds as follows:

First, we define a SHAP-based relevance R(n, x) of a neuron n for an input
x using the SHAP value:

R(n, x) := shap(n,M(x),M≤l(x) | M>l, X)

Here, we again consider the SHAP value on the submodel M>l of M starting
from layer l to the output layer, so that n is an input neuron of M>l, ensuring
its SHAP value is well-defined.

14 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

Fig. 3: Right: Adversarial attacks: original vs attacked classes; Left: The abstract
critical decision paths of the adversarial inputs found for the CNN model.

Using this, we define the SHAP-based critical decision neurons cdn(l, x | α)
in a layer l for an input x as the largest set of neurons in l such that:

1. |cdn(l, x | α)| ≤ α · |l|
2. For every neuron n ∈ cdn(l, x | α), R(n, x) > 0.
3. For every pair of neurons n and n′ from layer l, if n ∈ cdn(l, x | α) and

n′ /∈ cdn(l, x | α), then R(n, x) ≥ R(n′, x).

In other words, cdn(l, x | α) represents the set of at-most-α neurons in the
layer with the highest relevances.

Next, we define the SHAP-based critical decision path:

cdp(x | α) :=
⋃

l∈Layers(M)
cdn(l, x | α)

We say a neuron n is α-critical if n ∈ cdp(x | α).
Finally, for any set of input data points A, we define its SHAP-based abstract

critical decision path (ACDP) as the neurons that are α-critical in more than β
of the data points in A:

acdp(A | α, β) := {n | w(n,A | α) > β}

where the weight w(n,A | α) := |{x ∈ A : n ∈ cdp(x | α)}| / |A| is the ratio
of test inputs in the test suite A that have the neuron n in their α-critical
decision path. Below, we exploit this definition to analyze PyCT’s decision logic
in generating adversarial attacks.

3.5 Common Decision Logic behind Adversarial Inputs

We illustrate the effectiveness of abstract critical decision paths (ACDP) by
inspecting real adversarial instances for a CNN model, see Section 4.1 for de-
tails. The model allows for 39 successful PyCT attacks using SHAP-based predi-
cate prioritization. We outline the joint distribution of the original and attacked
classes in Figure 3. As the plot shows, the combinations of original and attacked

Concolic Testing on Inference Decision Logic of Neural Network Models 15

Table 1: Architecture of the models used in our evaluation
Model Name Layer Type Output Shape Param #

A toy CNN

conv2d (None, 26, 26, 2) 20
conv2d_1 (None, 11, 11, 2) 38
dense (None, 10) 510
dense_1 (None, 10) 110
Total params / Trainable params: 678

Single-layer
input_1 (InputLayer) (None, 28, 28, 1) 0

Attention
multi_head_attention (None, 28, 28, 1) 897

Transformer
flatten (None, 784) 0
dense (None, 10) 7850
Total params / Trainable params: 8747

Two-layer

input_1 (InputLayer) (None, 28, 28, 1) 0

Attention

multi_head_attention (None, 28, 28, 1) 897

Transformer

flatten (None, 784) 0
dense (None, 128) 100480
reshape (None, 16, 8) 0
multi_head_attention_1 (None, 16, 8) 1128
flatten_1 (None, 128) 0
dense_1 (None, 10) 1290
Total params / Trainable params: 103795

classes distribute nearly uniformly. Indeed, the distribution exhibits an entropy
H ≈ 4.23, which is rather close to the maximal possible entropy lg 39 ≈ 5.29.

Despite the seemingly random distribution of original and attacked classes,
we still identified a decision logic behind the attacks. Specifically, we examined
the set A of all adversarial inputs generated by PyCT and calculated its SHAP-
based abstract critical decision path acdp(A | α, β) as defined in Section 3.4.
Figure 3 (left) illustrates the results of acdp(A | α, β) with α = 20% and β ∈
{20%, 30%, 50%}. Recall that acdp(A | α, β) represents the neurons that are
α-critical for more than β of the dataset A. With β = 30%, 1355 out of 4430
neurons are identified as the most 20%-critical neurons by 30% of the adversarial
inputs. Even when β = 50%, 245 neurons are still recognized as 20%-critical for
more than half of the adversarial inputs.

This empirical evidence suggests that even under a relatively random distri-
bution of successful attacks, we can still discern a common decision logic behind
the generated adversarial instances. In practice, this logic may accelerate effec-
tive test generation by biasing the search toward high-weight ACDP neurons
and provide actionable targets for model repair or regularization, such as weight
damping or constraint-based fine-tuning on these neurons.

4 Experiments

To evaluate the performance of our influence-guided concolic testing framework,
we conducted preliminary experiments for a ReLU-CNN over MNIST and two

16 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

(a) Original images (b) DeepConcolic, L0 norm

(c) DeepConcolic, L∞ norm (d) PyCT, 2-pixel budget

Fig. 4: Example adversarial cases generated by DeepConcolic and PyCT. Deep-
Concolic successfully attacked all three images with L0 norm, but failed on digit
7 with L∞ norm. PyCT with a 2-pixel attack budget failed on digit 4.

Table 2: Attacking CNN with PyCT and DeepConcolic.
search strategy #atk #iter #sat #unsat #gen cons. #sol cons wall cpu

PQ, ≤ 8 pixels 39 (S) 32 31 1127 4142 1158 612 181
60 (U) 76 76 3820 10701 3897 1800 578

FIFO, ≤ 8 pixels 15 (S) 63 63 1240 13140 1304 608 188
84 (U) 154 156 3278 30234 3435 1779 638

DeepConcolic (L0) 94 (S) - - - - - - 38
6 (U) - - - - - - -

DeepConcolic (L∞) 1 (S) - - - - - - 370
99 (U) - - - - - - -

Transformer models over the Fashion-MNIST; models and parameter counts are
listed in Table 1. All experiments were conducted on a Windows 11 desktop
computer equipped with an Intel i7-12700 CPU, 32GB of RAM, and an RTX
3060 GPU.

4.1 Comparison with DeepConcolic

We first compare our prototype with DeepConcolic [19], a state-of-the-art con-
colic testing tool designed specifically for ReLU-CNNs. The results show that
DeepConcolic has distinct attack performance for different perturbation norms.4
For perturbations measured by the L0 norm, the tool achieves a success rate of
4 Tool was downloaded from https://github.com/TrustAI/DeepConcolic. We used

the following command: python -m deepconcolic.main –model {model_name}.h5 –
outputs out/{model_name} –max-iterations {max} –dataset {dataset} –criterion nc
–norm {norm} –save-all-tests. In our experiments, {norm} was either l0 (L0) or linf

Concolic Testing on Inference Decision Logic of Neural Network Models 17

over 90% with very short runtimes, approximately 30 seconds on average (Table
2). However, this rapid performance comes at the cost of heavily altering the
seed images (Figure 4). In contrast, the L∞ norm tends to preserve the visual
similarity between the adversarial and original images; the tool’s success rate
drops to around 1%, despite the examples being almost indistinguishable from
the original images. PyCT takes an average runtime between those of Deep-
Concolic in L0 and L∞ settings, producing adversarial examples that are much
more subtle than those generated under DeepConcolic’s L0 setup, yet avoiding
the very low success rate observed in the L∞ setting.

The contrasting outcomes between DeepConcolic and PyCT can be attributed
to their distinct testing pipelines. Specifically, DeepConcolic is coverage-driven:
a structural requirement (e.g., maximizing the node coverage metric) is selected
and solved symbolically; adversariality is checked only post hoc by a robust-
ness oracle. The solver is thus optimized to satisfy coverage constraints rather
than to change the model’s decision. In contrast, PyCT is flip-oriented : each
solver call targets a bypassed branch on the current concrete path, prioritized
by SHAP-based influence on the output; solutions are immediately validated for
a concrete label flip (Algorithms 1-2). This design choice trades volume of tests
for decision-changing tests under tight attack budgets.

In DeepConcolic’s own evaluation on ReLU-CNNs [19], the adversarial search
allows generous budgets for L0 (e.g., up to 100 pixels) and moderate budgets for
L∞ (e.g., ε=0.3). Such L0 budgets make it easy for a coverage-driven generator
to cross many ReLU boundaries, explaining its very high L0 success and the
visible artifacts. Under small, uniform per-pixel changes, the same coverage-first
search often achieves the requirement but not a label flip, producing the low
success rate as reported in Table 2 and the near-original visuals in Figure 4(c).
Our PyCT experiments deliberately operate under small pixel budgets, spending
those edits where influence is highest. This yields subtle adversarial examples at
a cost between DeepConcolic’s L0 and L∞ settings.

Overall, although both PyCT and DeepConcolic exploit concolic testing to
generate adversarial attacks, they have distinct advantages. If the goal is struc-
tural test case generation (e.g., maximizing some coverage metric) under relaxed
budgets, DeepConcolic is a strong choice. If the goal is to find visually subtle
decision-changing counterexamples under tight perturbation budgets, PyCT’s
influence-guided search strategy might be better aligned.

4.2 Effectiveness of SHAP-Based Prioritization in Targeting
Critical Decisions

We proceed to compare the SHAP-prioritized queue (PQ) against the standard
FIFO order when guiding PyCT to flip model decisions. The comparison spans
single-layer and two-layer Transformer architectures and one- vs. two-pixel per-
turbation budgets. In our experiments, the multi-head attention often leads to

(L∞), and {max} was replaced with the maximal possible iteration number that
ensures a runtime within 1800 seconds.

18 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

Table 3: Experimental results of the Single-layer Attention Transformer model
with 1 & 2 pixels (top), and of the Two-layer Attention Transformer model with
1 pixel (bottom).

search strategy #atk #iter #sat #unsat #gen cons. #sol cons wall cpu

PQ, 1-pixel 67 (S) 4 5 172 946 164 1031 430
33 (U) 9 11 605 1192 512 2960 1163

FIFO, 1-pixel 65 (S) 8 9 526 1292 321 1272 410
35 (U) 13 15 993 2016 909 2962 878

PQ, 2-pixels 6 (S) 4 3 87 1743 90 1532 472
25 (U) 8 9 499 2105 509 3600 1358

FIFO, 2-pixels 1 (S) 2 1 0 1684 1 536 5
32 (U) 13 13 801 3459 817 3600 792

search strategy #atk #iter #sat #unsat #gen cons #sol cons wall cpu

PQ, Prioritized 8 (S) 2 1 18 3334 19 472 154
21 (U) 1 0 13 1791 13 3429 2067

PQ, Limited 7 (S) 2 1 2 2929 13 628 596
22 (U) 1 0 18 2148 28 3600 2443

FIFO 11 (S) 7 6 297 11219 303 561 310
18 (U) 5 4 74 8682 79 3600 1123

considerable constraints (exceeding 1GB) in the final layers, which can cause
the tester to stall. To mitigate this issue, we explored the balance between high-
influence and low-complexity constraints through two strategies for managing
the priority queue:

Prioritizing Layers. This strategy prioritizes addressing the smallest con-
straints from earlier layers before tackling the largest ones in the later layers.

Limiting Runtimes. This strategy restricts the time allocated for building
each constraint. If the process takes longer than a 30 s threshold, the ongoing
constraint is bypassed to focus on the next one.

We report #atk (count), #iter (iterations until success/timeout), #sat/#unsat
(solver outcomes per attack), #gen cons./#sol cons. (generated vs. solved con-
straints), and wall/cpu time (averages over the corresponding sets). Each attack
seed is allotted a wall-time budget of 3600 s. The results are outlined in Table 3.

Single-layer Transformer, 1-pixel budget. On successful attacks, PQ reaches
counterexamples in half the iterations of FIFO (4 vs. 8), solves roughly half
as many constraints (164 vs. 321, about 49% fewer), and reduces unsatisfiable
solver calls by about two-thirds (172 vs. 526, about 67% fewer). These sav-
ings translate into a ≈19% lower wall time (1031 s vs. 1272 s) with similar CPU
time (430 s vs. 410 s). Importantly, PQ also finds slightly more successful cases
(67 vs. 65). Overall, prioritizing high-influence branches improves search preci-
sion—fewer but better-chosen solver queries yield faster flips with comparable
compute.

Concolic Testing on Inference Decision Logic of Neural Network Models 19

Single-layer Transformer, 2-pixel budget. With a larger perturbation budget, PQ
uncovers substantially more counterexamples (6 vs. 1). The per-success cost is
higher (e.g., about 3-times longer wall time), largely because PQ tackles harder
but more promising constraints (90 vs. 1 solved constraints). These results sug-
gest that, when the goal is finding more failures, PQ delivers markedly better
yield; when the goal is time-to-first example, FIFO can be cheaper on this easier
setting.

Two-layer Transformer, 1-pixel budget. On this deeper architecture, PQ variants
cut iterations by 71% (2 vs. 7) and solved constraints by 94–96% (19 or 13 vs.
303). PQ with layer prioritization lowers both wall time (about 16% faster) and
CPU time (about 50% lower) compared to FIFO, but attains fewer total suc-
cesses (8 vs. 11). Therefore, on deeper models, PQ makes each success cheaper,
though FIFO can still produce more total successes within the fixed time budget.

Across settings, SHAP-based prioritization consistently reduces search effort
per success (i.e., iterations and solver calls). On shallow models or small budgets,
this also improves time-to-flip; on deeper models, the advantage depends on how
we trade influence for constraint complexity.

4.3 Trading Off High-Influence and Low-Complexity Constraints

Transformer constraints at later layers can explode in size because each node
conjoins all ancestors in the path, making final-layer formulas dominate the
budget. We therefore employ two PQ realizations on the two-layer Transformer
(Table 2, bottom): Prioritized Layers solves earlier-layer constraints first, while
Limited Runtimes retains high-influence ordering but skips any single constraint
that exceeds a 30 s build cap.

When it comes to computation effort and latency, both PQ variants dramat-
ically shrink the work per success relative to FIFO. Iterations drop from 7 to
2, and solved constraints from 303 to 19 (prioritized layers) or 13 (limited run-
times), i.e., 94–96% fewer. PQ with prioritized layers also reduces wall time from
561 s to 472 s, about 16% faster, and halves CPU time from 310 s to 154 s. By
contrast, PQ with limited runtimes avoids getting stuck on pathological formulas
but can spend more CPU overall (596 s) due to frequent constraint handovers.

For the effect on yield, FIFO attains more total successes (11 cases) within the
fixed attack budget than either PQ variant (8 and 7 cases). This is consistent with
FIFO opportunistically solving many small constraints, some of which happen
to flip the output, whereas PQ invests in fewer, higher-influence (often larger)
constraints.

Overall, prioritized layers minimize iterations/solves and improve wall/CPU
time, while FIFO maximizes the count of counterexamples within a hard time
cap. By selecting the most critical constraints but limiting the build time, PyCT
avoids getting stuck on expensive constraints while still benefiting from prioritiz-
ing high-influence constraints. Furthermore, constraints generated in early layers
provide sufficient numbers of constraints with different SHAP values, which can
be solved based on their priority values.

20 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

Based on these empirical results, we recommend using PQ with prioritized
layers when the objective is to obtain quick counterexamples and downstream
triage (e.g., a minimal solve footprint). On the other hand, we recommend using
FIFO or PQ with limited runtimes when the objective is to maximize the number
of distinct failures discovered under a strict time cap on deep models. In concept,
it is possible to combine schedules to capture the best of both worlds: one can
start with PQ with prioritized layers for rapid early wins; if no flip occurs within a
short slice (e.g., 2–3 iterations), fall back to FIFO or to PQ with limited runtimes
to diversify explored paths. A thorough theoretical and empirical analysis of more
sophisticated scheduling strategies is an important direction for future work.

4.4 Limitations and threats to validity

Our evaluation has the following limitations and threats to validity. First, the
SHAP ranking used in PyCT’s branch exploration depends on the background
dataset; different choices may alter branch priorities. Second, although we re-
port consistent trends, absolute counts and timings are specific to the models,
datasets, and hardware in our evaluation. Finally, we prototype PyCT on com-
pact classifier-style Transformers that include standard multi-head self-attention;
this captures the core attention primitive but omits common encoder/decoder
components. Hence, our findings demonstrate attention-level feasibility rather
than end-to-end Transformer coverage.

5 Conclusion

In this work, we reported preliminary results on influence-guided concolic test-
ing of multi-head self-attention. Our approach aims to focus solver effort on
high-leverage decisions to facilitate the production of valid counterexamples for
Transformer models. By utilizing SHAP values to prioritize influential neurons,
our testing framework uncovers vulnerabilities that traditional coverage-based
methods may overlook. Future work should focus on reducing the computational
overhead of constraint solving and symbolic execution, as well as evaluating more
versatile prioritization strategies to achieve effective path exploration of large
models.

References

1. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information process-
ing systems, 25, 2012.

2. Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recogni-
tion: The shared views of four research groups. IEEE Signal processing magazine,
29(6):82–97, 2012.

Concolic Testing on Inference Decision Logic of Neural Network Models 21

3. David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

4. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

5. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

6. Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 427–436,
2015.

7. Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

8. Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun,
Emese Thamo, Min Wu, and Xinping Yi. A survey of safety and trustworthi-
ness of deep neural networks: Verification, testing, adversarial attack and defence,
and interpretability. Computer Science Review, 37:100270, 2020.

9. Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks. In Proceedings
of the 29th International Conference on Computer-Aided Verification (CAV), pages
97–117. Springer, Springer, 2017.

10. Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Ef-
ficient neural network robustness certification with general activation functions.
Advances in neural information processing systems, 31, 2018.

11. Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. For-
mal security analysis of neural networks using symbolic intervals. In 27th USENIX
Security Symposium, pages 1599–1614, 2018.

12. Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al.
The marabou framework for verification and analysis of deep neural networks. In
Proceedings of the 31st International Conference on Computer-Aided Verification
(CAV), pages 443–452. Springer, 2019.

13. Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract
domain for certifying neural networks. Proceedings of the ACM on Programming
Languages, 3(POPL):1–30, 2019.

14. Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin
Vechev. Fast and effective robustness certification. Advances in neural information
processing systems, 31, 2018.

15. Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. Ai2: Safety and robustness certification of neural
networks with abstract interpretation. In 2018 IEEE symposium on security and
privacy (SP), pages 3–18. IEEE, 2018.

16. Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract in-
terpretation for provably robust neural networks. In International Conference on
Machine Learning, pages 3578–3586. PMLR, 2018.

17. Fang Yu, Ya-Yu Chi, and Yu-Fang Chen. Constraint-based adversarial example
synthesis. arXiv preprint arXiv:2406.01219, 2024.

22 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

18. Yu-Fang Chen, Wei-Lun Tsai, Wei-Cheng Wu, Di-De Yen, and Fang Yu. Pyct:
A python concolic tester. In Programming Languages and Systems: 19th Asian
Symposium, APLAS 2021, Chicago, IL, USA, October 17–18, 2021, Proceedings
19, pages 38–46. Springer, 2021.

19. Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. Deepconcolic: Testing and debugging deep neural networks. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 111–114. IEEE, 2019.

20. Zhiyang Zhou, Wensheng Dou, Jie Liu, Chenxin Zhang, Jun Wei, and Dan
Ye. Deepcon: Contribution coverage testing for deep learning systems. In 2021
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 189–200. IEEE, 2021.

21. Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. Structural coverage criteria
for neural networks could be misleading. International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER), pages 89–92, 2019.

22. Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu,
and Miryung Kim. Is neuron coverage a meaningful measure for testing deep
neural networks? In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 851–862, 2020.

23. Scott M Lundberg and Su-In Lee. A unified approach to interpreting model pre-
dictions. Advances in neural information processing systems, 30, 2017.

24. Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important
features through propagating activation differences. In International conference on
machine learning, pages 3145–3153. PMLR, 2017.

25. Hugh Chen, Scott M Lundberg, and Su-In Lee. Explaining a series of models by
propagating shapley values. Nature communications, 13(1):4512, 2022.

26. Xiaofei Xie, Tianlin Li, Jian Wang, Lei Ma, Qing Guo, Felix Juefei-Xu, and Yang
Liu. Npc: Neuron path coverage via characterizing decision logic of deep neural
networks. ACM Transactions on Software Engineering and Methodology (TOSEM),
31(3):1–27, 2022.

27. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

28. Gregory Bonaert, Dimitar I Dimitrov, Maximilian Baader, and Martin Vechev.
Fast and precise certification of transformers. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Im-
plementation, pages 466–481, 2021.

29. Jieren Deng, Yijue Wang, Ji Li, Chao Shang, Hang Liu, Sanguthevar Rajasekaran,
and Caiwen Ding. Tag: Gradient attack on transformer-based language models.
arXiv preprint arXiv:2103.06819, 2021.

30. Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-Jui Hsieh.
Robustness verification for transformers. arXiv preprint arXiv:2002.06622, 2020.

31. Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela.
Gradient-based adversarial attacks against text transformers. arXiv preprint
arXiv:2104.13733, 2021.

32. Charis Eleftheriadis, Nikolaos Kekatos, Panagiotis Katsaros, and Stavros Tripakis.
On neural network equivalence checking using SMT solvers. In International
Conference on Formal Modeling and Analysis of Timed Systems, pages 237–257.
Springer, 2022.

Concolic Testing on Inference Decision Logic of Neural Network Models 23

33. Hai Duong, ThanhVu Nguyen, and Matthew Dwyer. A DPLL(t) framework for
verifying deep neural networks. arXiv preprint arXiv:2307.10266, 2023.

34. Dario Guidotti, Laura Pandolfo, and Luca Pulina. Verifying neural networks with
non-linear SMT solvers: a short status report. In 2023 IEEE 35th International
Conference on Tools with Artificial Intelligence (ICTAI), pages 423–428. IEEE,
2023.

35. Soham Banerjee, Sumana Ghosh, Ansuman Banerjee, and Swarup K Mohalik.
SMT-based modeling and verification of spiking neural networks: A case study. In
International Conference on Verification, Model Checking, and Abstract Interpre-
tation, pages 25–43. Springer, 2023.

36. Ming-I Huang, Chih-Duo Hong, and Fang Yu. Concolic testing on individual fair-
ness of neural network models. arXiv preprint arXiv:2509.06864, 2025.

37. Luca Pulina and Armando Tacchella. Challenging SMT solvers to verify neural
networks. AI Communications, 25(2):117–135, 2012.

38. Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neural net-
works. In Proceedings of the 15th International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA), pages 269–286. Springer, 2017.

39. Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Ef-
ficient formal safety analysis of neural networks. Advances in neural information
processing systems, 31, 2018.

40. Luiz Sena, Xidan Song, Erickson Alves, Iury Bessa, Edoardo Manino, Lucas
Cordeiro, et al. Verifying quantized neural networks using SMT-based model check-
ing. arXiv preprint arXiv:2106.05997, 2021.

41. Thomas A Henzinger, Mathias Lechner, and DJordje Zikelic. Scalable verification
of quantized neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 3787–3795, 2021.

42. Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. Concolic testing for deep neural networks. Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering,
pages 109–119, 2018.

43. Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. Testing deep neural networks. arXiv preprint arXiv:1803.04792,
2018.

44. Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew Hill, and
Rob Ashmore. Deepconcolic: Testing and debugging deep neural networks. 2019
IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion), pages 111–114, 2019.

45. M Pezze. Software testing and analysis: process, principles, and techniques. John
Wiley & Sons, New York, 2008.

46. Lichao Feng, Xingya Wang, Shiyu Zhang, and Zhihong Zhao. Deepfeature: Guiding
adversarial testing for deep neural network systems using robust features. Journal
of Systems and Software, 219:112201, 2025.

47. Hugh Chen, Scott M. Lundberg, and Su-In Lee. Explaining a series of models by
propagating shapley values. Nature Communications, 13(1), 2022.

48. Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

49. Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu,
and Jianguo Li. Boosting adversarial attacks with momentum. arXiv preprint
arXiv:1710.06081, 2018.

24 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

50. Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, et al. Deepgauge: Multi-granularity testing cri-
teria for deep learning systems. Proceedings of the 33rd ACM/IEEE international
conference on automated software engineering, pages 120–131, 2018.

51. Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:
a simple and accurate method to fool deep neural networks. Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016.

52. Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. Deephunter: a coverage-guided fuzz
testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT international symposium on software testing and analysis, pages 146–
157, 2019.

53. Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao
Xie, Li Li, Yang Liu, Jianjun Zhao, et al. Deepmutation: Mutation testing of
deep learning systems. In 2018 IEEE 29th International Symposium on Software
Reliability Engineering (ISSRE), pages 100–111. IEEE, 2018.

54. Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. Ten-
sorfuzz: Debugging neural networks with coverage-guided fuzzing. In International
Conference on Machine Learning, pages 4901–4911. PMLR, 2019.

55. Tongtong Bai, Song Huang, Yifan Huang, Xingya Wang, Chunyan Xia, Yubin Qu,
and Zhen Yang. Criticalfuzz: A critical neuron coverage-guided fuzz testing frame-
work for deep neural networks. Information and Software Technology, 172:107476,
2024.

56. Phillip Schanely. Crosshair - an analysis tool for python that blurs the line between
testing and type systems. https://github.com/pschanely/CrossHair, 2017. [On-
line; accessed 20-Oct-2024].

57. Björn I. Dahlgren. Pysym documentation. https://pythonhosted.org/pysym/,
2016. (2016).

58. D. Barsotti, A.M. Bordese, and T. Hayes. Pef: Python error finder. In Selected
Papers of the XLIII Latin American Computer Conference (CLEI), volume 339 of
Electronic Notes in Theoretical Computer Science, pages 21–41. Elsevier, 2017.

59. Thomas Ball and Jakub Daniel. Deconstructing dynamic symbolic execution. In
Dependable Software Systems Engineering, pages 26–41. IOS Press, Amsterdam,
2015.

A Pure-Python Semantics of Multi-Head Attention with
Concolic Execution

This appendix gives a step-by-step, pure-Python semantics for the multi-head
attention layer we have implemented for PyCT. It specifies (i) shapes and data
flow; (ii) how branch predicates arise during execution and are registered; and
(iii) the precise under-approximation we adopt inside exp for solver compatibility
(cf. Section 3.3).

Notation and shapes. Let the input sequence be X ∈ RL×dmodel (row t is token
xt). Let h be the number of heads and dk the per-head key/query dimension.

Concolic Testing on Inference Decision Logic of Neural Network Models 25

Weights and biases are stored as plain Python lists in the following shapes:

WQ,WK ,WV ∈ Rdmodel×h×dk , BQ, BK , BV ∈ Rh×dk ,

WO ∈ Rh×dk×dmodel , BO ∈ Rdmodel .

For concolic execution, we view a scalar as a pair ⟨c, ϕ⟩ (concrete value c and
symbolic expression ϕ); ordinary scalars are identified with ⟨c,⊥⟩. All list/loop
computations below operate element-wise on such pairs.

Step 1: Linear projections and head splitting (tas)

For each head i ∈ [0, h), time step t ∈ [0, L), and feature j ∈ [0, dk), the
pure-Python linear transform computes:

Q[i, t, j] =

dmodel−1∑
k=0

X[t, k] ·WQ[k, i, j] +BQ[i, j],

K[i, t, j] =

dmodel−1∑
k=0

X[t, k] ·WK [k, i, j] +BK [i, j],

V [i, t, j] =

dmodel−1∑
k=0

X[t, k] ·WV [k, i, j] +BV [i, j].

The result shapes are Q,K, V ∈ Rh×L×dk . In code, this is the tas function
(Algorithm 3), expressed with nested for-loops only.

Step 2: Scaled dot-product scores (dpa)

For each head i, define the score matrix Si ∈ RL×L by

Si[t, u] =
1√
dk

dk−1∑
j=0

Q[i, t, j] ·K[i, u, j].

This is implemented by a naive matrix_multiply followed by division by
√
dk

(Algorithm 4). No external libraries are used.

Step 3: Numerically stable softmax (softmax)

For each head i and row t, define the row maximum mi,t = maxu∈[0,L) Si[t, u].
We compute mi,t via a Python loop with an if-ladder, which evaluates boolean
comparisons over concolic numbers and therefore registers branch predicates
to the queue (the negations of every guard encountered). Formally, evaluating
if (z > m) emits the predicate (z ≤ m) to the worklist with the associated
output-row neurons (t, ·).

26 Chih-Duo Hong, Wang Yu, Yao-Chen Chang, and Fang Yu

To avoid overflow/underflow, we subtract the row max, then exponentiate
and normalize:

Ŝi[t, u] = Si[t, u]−mi,t, Pi[t, u] =
exp(conc(Ŝi[t, u]))∑L−1
v=0 exp(conc(Ŝi[t, v]))

.

Here conc(⟨c, ϕ⟩) = c concretizes any concolic term inside math.exp, yielding an
under-approximate symbolic semantics for softmax (path exploration may miss
some branches), while preserving the validation oracle soundness because every
synthesized input is re-executed concretely (Section 3.3). Each row Pi[t, ·] is a
probability simplex.

Step 4: Head outputs and value aggregation

For each head i and time step t, the attention output is

Ai[t, j] =

L−1∑
u=0

Pi[t, u] · V [i, u, j], so Ai ∈ RL×dk .

This is a plain nested-loop matrix multiplication (Algorithm 4, Line 6).

Step 5: Concatenation and output projection (concat)

We conceptually concatenate heads along the last dimension and then apply the
output projection using only base Python operations:

Y [t, ℓ] =

h−1∑
i=0

dk−1∑
j=0

Ai[t, j] ·WO[i, j, ℓ] + BO[ℓ], Y ∈ RL×dmodel .

The provided implementation computes this via concat (Algorithm 6) using
list-of-lists; no reshapes require external libraries.

Step 6: Branch predicates generation and register

Branch predicates arise anywhere a Python boolean over concolic scalars is eval-
uated. In MHA this happens in the max routine used by softmax:

– For each row t of Si, calling max(row) compares elements using > and trig-
gers the branch listener. We call register_current_indices([(t, k) | k <
dmodel]) before the loop so that all guards in this row are associated with the
output-row neurons (t, ·).

– Each evaluated guard (z > m) pushes its negation (z ≤ m) into the priority
queue with the SHAP-based influence score of the associated neurons. (See
Algorithm 1 and Section 3.2 for the prioritize-solve-execute loop.)

Concolic Testing on Inference Decision Logic of Neural Network Models 27

Step 7: Properties and complexity

– Row-stochasticity. With concretization inside exp, every Pi[t, ·] is non-negative
and sums to 1.

– Cost (single head). Linear projections has time complexity O(Ldmodel dk);
computing scores requires O(L2dk); aggregation requires O(L2dk). Multiply
by h heads and output projection takes O(Lhdk dmodel).

– SMT-compatibility. All steps use base Python control-flow, indexing, and
arithmetic; the only transcendental is math.exp, guarded by conc(·) as above.

Wrap-up: The end-to-end forward pass

Let Q,K, V ∈ Rh×L×dk be as constructed in Steps 1–2, and define the per-head
slices Qi := Q[i, :, :] ∈ RL×dk , Ki := K[i, :, :] ∈ RL×dk , and Vi := V [i, :, :] ∈
RL×dk for each head i ∈ {0, . . . , h − 1}. Form the scaled dot-product scores
Si := 1√

dk
QiK

⊤
i ∈ RL×L and the row-wise probabilities Pi := softmax(Si) ∈

RL×L as in Step 3 (softmax uses conc inside exp). The per-head outputs are
Ai := PiVi ∈ RL×dk (Step 4). Concatenating heads and applying the output
projection (Step 5) yields

Y [t, :] =

h−1∑
i=0

dk−1∑
j=0

Ai[t, j] WO[i, j, :] + BO.

Branch predicates are registered only in the max used by softmax; arguments to
exp are concretized as specified in Step 3, and every candidate input is validated
by concrete re-execution.

